首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Lactosucrose (O-β-d-galactopyranosyl-(1,4)-O-α-d-glucopyranosyl-(1,2)-β-d-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes.  相似文献   

2.
Production of the artificial sweetener, lactosucrose, by various microorganisms containing levansucrase activity was investigated. Of the tested bacteria, Bacillus subtilis was the most effective producer using lactose as an acceptor and sucrose as a fructosyl donor. Lactosucrose production by this strain was optimal at pH 6.0 and 55 °C whereupon 181 g lactosucrose l–1 was produced from 225 g lactose l–1 and 225 g sucrose l–1 in 10 h.  相似文献   

3.
Permeabilized probiotic Lactobacillus plantarum was used as a source of β-galactosidase for the synthesis of galactooligosaccharides (GOS) from lactose. β-galactosidase activity was highest when galactose (1,724 Miller Units) was used as a carbon source compared to lactose, sucrose or glucose at 37 °C, 18 h. Permeabilized cells had the highest transgalactosylation activity resulting in 34 % (w/w) GOS synthesis from 40 % (w/v) lactose at 50 °C over 12 h. HPLC revealed that the GOS were composed of 13 % disaccharides (non-lactose), 17 % trisaccharides and 4 % tetrasaccharides that were further confirmed by ESI–MS.  相似文献   

4.
Microbial beta-fructofuranosidases with transfructosylating activity can catalyze the transfructosylation of sucrose and synthesize fructooligosaccharides. Aspergillus japonicus NTU-1249 isolated from natural habitat was found to produce a significant amount of beta-fructofuranosidase with high transfructosylating activity and to have the potential for industrial production of fructooligosaccharides. In order to improve it's enzyme productivity, the medium composition and the cultivation conditions for A. japonicus NTU-1249 were studied. A. japonicus NTU-1249 can produce 83.5 units of transfructosylating activity per ml broth when cultivated in a shaking flask at 28 degrees C for 72 hours with a modified medium containing 80 g/l sucrose, 15 g/l soybean flour, 5 g/l yeast extract and 5 g/l NaCl at an initial pH of 6.0. The enzyme productivity was also optimized by submerged cultivation in a 5-litre jar fermentor with aeration at 1.5 vvm and agitation at 500 rpm. Under these operating conditions, the productivity of transfructosylating activity increased to 185.6 U/ml. Furthermore, the transfructosylating activity was improved to 256.1 U/ml in 1,000-litre pilot-scale fermentor. Enzymatic synthesis of fructooligosaccharides by beta-fructofuranosidase from A. japonicus NTU-1249 was performed in batch type by adding 5.6 units of transfructosylating activity per gram of sucrose to a 50% (w/v) sucrose solution at pH 5.0 and 50 degrees C. The yield of fructooligosaccharides was about 60% after reaction for 24 hours, and the syrup produced contained 29.8% (w/v) fructooligosaccharides, 15.2% (w/v) glucose and 5.0% (w/v) sucrose.  相似文献   

5.
Lactosucrose synthesis from sucrose and lactose was carried out by using beta-fructofuranosidase from Arthrobacter sp. K-1. The transfructosylation mechanism was found to be of an ordered bi-bi type in which sucrose was bound first to the enzyme and lactosucrose was released last. Hydrolysis side-reaction experiments indicated that the reactions were uncompetitively inhibited by glucose and lactose, while no inhibition by fructose was apparent. The overall reaction rates were formulated. The reaction rate constants, equilibrium constant, and dissociation and Michaelis constants were determined at 35 degrees C and 50 degrees C by fitting the experimental concentration changes with the calculated values by a nonlinear least-square method. The average relative derivation for the concentrations was 9.67%. The kinetic parameters were also calculated for 43 degrees C and 60 degrees C by assuming the Arrhenius law, and the course of reaction was predicted. The obtained reaction rate equations well represented the concentration changes during the experiment at all temperatures.  相似文献   

6.
In this study, in order to develop a continuous production process of lactosucrose in a packed-bed reactor, Sterigmatomyces elviae ATCC 18894 was selected and mutated. The mutant strain of S. elviae showed 54.3% higher lactosucrose production than the wild type. Reaction conditions such as temperature, pH, substrate concentration and flow rate were also optimized. Under optimized reaction conditions (50 degrees C, pH 6.0, 25% sucrose and 25% lactose as substrate, flow rate 1.2 ml/min), the maximum concentration of lactosucrose (192 g/l) was obtained. In a packed-bed reactor, continuous production of lactosucrose was performed using S. elviae mutant immobilized in calcium alginate, and about 180 g/l of lactosucrose production was achieved for 48 days.  相似文献   

7.
Aspergillus niger IMI 303386 produced higher levels of intra- and extracellular -fructofuranosidase and inulinase on inulin than on sucrose. Intracellular -fructofuranosidase from sucrose medium catalysed the best transfructosylation reaction. The concentration of fructooligosaccharides (FOS) reached a maximum in 72 h with 25% (w/v) sucrose. The FOS were purified and the main products were kestose and nystose. Inulinase hydrolysed inulin in an exofashion and released mainly fructose.  相似文献   

8.
A strain of Klebsiella oxytoca was isolated from milk capable of completely utilising the lactose (3.5%, w/v) in whey and producing biopolymer. In a broth containing 5% (w/v) lactose, 6.1 g/l of extracellular biopolymer was produced in 72 h by the isolate. At a shear rate of 2 s, broth viscosities of greater than 400 cP were obtained in lactose rich (4%, w/v) media containing 0.2% (w/v) nitrogen concentration.  相似文献   

9.
The production of levansucrase (LS) by thermophilic Geobacillus stearothermophilus was investigated. LS production was more effective in the presence of sucrose (1%, w/v) than fructose, glucose, glycerol or raffinose. The results (Top 57°C; stable for 6 h at 47°C) indicate the high stability of the transfructosylation activity of G. stearothermophilus LS as compared with LSs from other microbial sources. Contrary to temperature, the pH had a significant effect on the selectivity of G. stearothermophilus LS‐catalyzed reaction, favoring the transfructosylation reaction in the pH range of 6.0–6.5. The kinetic parameter study revealed that the catalytic efficiency of transfructosylation activity was higher as compared with the hydrolytic one. In addition to levan, G. stearothermophilus LS synthesized fructooligosaccharides in the presence of sucrose as the sole substrate. The results also demonstrated the wide acceptor specificity of G. stearothermophilus LS with maltose being the best fructosyl acceptor. This study is the first on the catalytic properties and the acceptor specificity of LS from G. stearothermophilus. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1405–1415, 2013  相似文献   

10.
A novel fructosyltransferase (AoFT) capable of synthesizing sucrose 6-acetate (S6A) from sucrose and glucose 6-acetate has been purified to homogeneity from Aspergillus oryzae ZZ-01. Its molecular mass was ~50 kDa by SDS-PAGE; optimal activity was at 45 °C and it was stable from pH 4.5 to 7.5 with an optimum pH of 6. Mg2+, K+ (5 mM), propanol, toluene (50 %, v/v), Tween 20 or Triton X-100 (1 %, w/v) increased the transfructosylation activity by 20, 17, 17, 10, 25 and 20 %, respectively. An overall conversion of 32 % was achieved under optimal conditions over 24 h. This is the first report that the purified and characterized the fructosyltransferase from Aspergillus capable of synthesis of S6A from sucrose and glucose 6-acetate.  相似文献   

11.
The intra- and extracellular levansucrase (LS) activities produced by Bacillus amyloliquefaciens were promoted by supplementing the sucrose medium with yeast and peptone as nitrogen sources. These activities were purified by polyethylene glycol (PEG) fractionation for the first time. PEGs of low molecular weight selectively fractionated the intracellular LS activity rather than the extracellular LS activity. Contrary to other LSs, B. amyloliquefaciens LSs exhibited high levan-forming activity over a wide range of sucrose concentrations. The optimum temperatures for the intra- (25-30 °C) and extracellular (40 °C) LS transfructosylation activities were lower than those for the hydrolytic activities (45-50 °C; 50 °C). In addition, the catalytic efficiency for the transfructosylation activity of intracellular LS was higher than that of extracellular LS. These differences between intra- and extracellular LSs reveal the occurrence of certain conformational changes to LS upon protein secretion and/or purification. This study is the first to highlight that B. amyloliquefaciens LSs synthesized a variety of FOSs from various saccharides, with lactose and maltose being the best fructosyl acceptors.  相似文献   

12.
In this study, the optimization of culture medium using a Sterigmatomyces elviae mutant was investigated using statistical analysis to increase the cell mass and lactosucrose ((4)G-beta-D-galactosylsucrose) production. In basal medium, the cell mass and lactosucrose production were 4.12 g/l and 140.91 g/l, respectively. However, because of the low cell mass and lactosucrose production, optimization of culture medium was carried out to increase the cell mass and lactosucrose production. Culture media were optimized by the S. elviae mutant using analysis of variance (ANOVA) and response surface methodology (RSM). Central composite designs using RSM were utilized in this investigation. Quadratic models were obtained for cell mass and lactosucrose production. In the case of cell mass, optimal components of the medium were as follows: sucrose 1.13%, yeast extract 0.99%, bactopeptone 2.96%, and ammonium sulfate 0.40%. The predicted maximum value of cell mass was about 5.20 g/l and its experimental value was 5.08 g/l. In the case of lactosucrose production, optimal components of the medium were as follows: sucrose 0.96%, yeast extract 1.2%, bactopeptone 3.0%, and ammonium sulfate 0.48%. Then, the predicted maximum value of lactosucrose production was about 194.12 g/l and the corresponding experimental value was about 183.78 g/l. Therefore, by culturing using predicted conditions, the real cell mass and lactosucrose production increased to 23.3% and 30.42%, respectively.  相似文献   

13.
The facultative thermophile, Bacillus flavothermus, produced highest a-amylase activity (28.6 units/ml) with lactose (4%, w/v) and Yeatex (2%, w/v) and an initial pH 6.0 at 55°C. In batch fermentation, biomass and a-amylase activity peaked twice. In the first of these growth cycles the organism utilised the nitrogen source, Yeatex, and maximum enzyme was associated with cell lysis. In the second growth phase the carbohydrate source, lactose, was utilised and enzyme peaked in the early stages of growth.  相似文献   

14.
The cell-free supernatant containing bacteriocin ST13BR, produced by Lactobacillus plantarum ST13BR, inhibits the growth of L. casei, Pseudomonas aeruginosa, Enterococcus faecalis, Klebsiella pneumoniae and Escherichia coli. Based on tricine-SDS-PAGE, bacteriocin ST13BR is 10 kDa in size. Complete inactivation or significant reduction in bacteriocin activity was observed after treatment with Proteinase K, trypsin and pronase, but not with catalase or alpha-amylase. Low bacteriocin activity (200 AU/ml) was recorded in BHI medium, M17 broth, 10% (w/v) soy milk, and 2% and 10% (w/v) molasses, despite good growth. Maximal bacteriocin activity (6,400 AU/ml) was recorded after 23 h in MRS broth, but only at 30 degrees C. Tween 80 in MRS broth increased bacteriocin production by more than 50%. Meat extract or yeast extract as sole nitrogen source, or a combination of the two (1 : 1) in MRS broth, stimulated bacteriocin production (6,400 AU/ml). Only 50% activity (3,200 AU/ml) was recorded with tryptone as sole nitrogen source, whereas a combination of tryptone, meat extract and yeast extract yielded 6,400 AU/ml. Bacteriocin production was not stimulated by the addition of glucose at 2.0% w/v (3,200 AU/ml), nor 2% (w/v) fructose, sucrose, lactose or mannose, respectively (800 AU/ml). Activity levels less than 200 AU/ml were recorded in the presence of 0.05% to 0.5% (w/v) maltose. Maximal bacteriocin production (6,400 AU/ml) was recorded in the presence of 2% (w/v) maltose. Maltose at 4.0% (w/v) led to a 50% reduction of bacteriocin activity. The presence of 1.0% (w/v) and higher KH(2)PO(4), or glycerol at 0.2% (w/v) suppressed bacteriocin production.  相似文献   

15.
Li C  Liu Q  Song X  Di D  Ji A  Qu Y 《Biotechnology letters》2003,25(24):2113-2116
A Pseudomonas sp. was isolated with enantioselective epoxide hydrolase activity to ethyl 3-phenylglycidate. Cells grown on sucrose and suspended in 10% (v/v) dimethyl formamide as co-solvent produced (2R,3S) ethyl 3-phenylglycidate with 95% ee and 26% yield in 12 h from 0.2% (w/v) of the racemate.  相似文献   

16.
17.
Cellulases (EC 3.2.1.4) of a Cytophaga species WTHC 2421 (ATCC 29474) were found in the soluble portion of the cell (the periplasm and the cytoplasm) and on the membrane. Cell-free cellulases were not found. Most of the carboxymethylcellulase activity associated with reduction of viscosity was membrane bound, whereas most of the carboxymethylcellulose (CMC) saccharifying activity was soluble. The CMC-saccharifying activity was increased 534 X by purification procedures which included ammonium sulfate precipitation and molecular exclusion chromatography with Sephadex G-75 and Biogel p-100. Periplasmic carboxymethycellulase had a molecular weight of 6250 and cytoplasmic carboxymethylcellulase had a molecular weight of 8650. Analytical ultracentrifugation of the periplasmic carboxymethylcellulase (CMCase) indicated that it had a low molecular density. The chromatographic fraction containing periplasmic CMCase also contained enzyme activity against crystalline cellulose. The activity against crystalline cellulose was 238 X higher than the activity shown by the whole cell. The reaction of the enzyme with either CMC or dewaxed cotton produced only glucose. The enzyme was slightly inhibited by the presence of 0.01% (w/v) glucose, lactose, or cellobiose, but it was not affected by sucrose, and exhibited increased activity in the presence of xylose and fructose.  相似文献   

18.
Fourteen lactose-fermenting strains of Kluyveromyces marxianus , including its anamorph, Candida kefyr , were grown in two media containing 20% (w/v) sugar as either beet molasses or cheese whey. Strain NBRC 1963 of K. marxianus converted sucrose and lactose to ethanol in both media most efficiently. However, ethanol was produced from sucrose and not from lactose by strain NBRC 1963 in the medium containing equal amounts of sugar from beet molasses and cheese whey. The spontaneous mutants resistant to 2-deoxyglucose in the minimal medium composed of galactose as the sole carbon source were isolated from strain NBRC 1963. Among them, strain KD-15 vigorously produced ethanol in the media containing beet molasses, cheese whey, or both. The mutant strain KD-15 was insensitive to catabolite repression, as shown by the observation that β-galactosidase was not repressed in the presence of sucrose from beet molasses.  相似文献   

19.
A novel strain of Bifidobacterium bifidum NCIMB 41171, isolated from a faecal sample from a healthy human volunteer and able to express -galactosidase activity, was used in synthesis reactions for the production of galactooligosaccharide from lactose. The -galactosidase activity of whole bifidobacterial cells showed an optimum activity at pH 6.8–7.0 and 40°C. The transgalactosylation activity of the B. bifidum cells from 50% (w/w) lactose resulted in a galactooligosaccharide mixture (20% w/w) comprising (w/w): 25% disaccharides, 35% trisaccharides, 25% tetrasaccharides and 15% pentasaccharides. Using different initial lactose concentrations, the conversion rate to galactooligosaccharides was maximum (35%) when 55% (w/w) lactose was used. In fermentation experiments, B. bifidum showed an increased preference towards the produced galactooligosaccharide mixture, displaying higher growth rate and short-chain fatty acid production when compared with commercially available oligosaccharides.  相似文献   

20.
Summary Bacteriocin ST33LD, produced by Leuconostoc mesenteroides subsp. mesenteroides, is approximately 2.7 kDa in size and inhibits Enterococcus faecalis, Escherichia coli, Lactobacillus casei and Pseudomonas aeruginosa. Good growth was recorded in the presence of 10% (w/v) soy milk or 10% (w/v) molasses, but there was no bacteriocin production. Growth in MRS broth adjusted to pH 4.5 yielded low bacteriocin levels (800 AU/ml). However, the same medium adjusted to pH 5.0, 5.5 and 6.5, respectively, yielded 3200 AU/ml. Tween 80 decreased bacteriocin production by more than 50%. Growth in the presence of tryptone yielded maximal activity (12,800 AU/ml), whereas different combinations of tryptone, meat extract and yeast extract produced activity levels of 1600 AU/ml and less. Growth in the presence of 2.0% (w/v) sucrose, or maltose, yielded much higher levels of bacteriocin activity (12,800 AU/ml) compared to growth in the presence of 2.0% (w/v) glucose or lactose (6400 AU/ml). Lower yields were also recorded in the presence of fructose and mannose. KH2PO4 at 10.0% (w/v) stimulated bacteriocin production. Glycerol concentrations of 0.5% (w/v) and higher (up to 5.0%, w/v) repressed bacteriocin production by 50%. The addition of cyanocobalamin, thiamine and L-ascorbic acid to MRS broth (1.0 ppm) yielded 12,800 AU/ml bacteriocin, whereas the addition of DL-6,8-thioctic acid yielded only 6 400 AU/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号