首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Guinea pig spermatocytes were fixed in glutaraldehyde, frozen in freon 22 cooled by liquid nitrogen, and then fractured to show the subcellular component previously identified as lddictyosome-like structure (DLS). The DLS membranes had fewer particles than those of the Golgi apparatus. Moreover, the DLS saccules were without fenestrae which were common to Golgi apparatus cisternae. These results further confirm that the DLS are unique subcellular components of mammalian testes, and may prove useful in determining the etiology and function of DLS.  相似文献   

2.
Summary Dictyosome-like structures (DLS) are formed in early spermatocytes first as single saccules. These saccules occur in association with forms of endoplasmic reticulum (ER) characterized by a paucity of ribosomes and luminal content, by a constriction of the lumina, and by a tendency to fragment or form myelin figures during fixation. Nascent DLS and the unusual ER cisternae share many characteristics in common including a pattern of staining with fixatives containing tannic acid where the membranes appear thin due to the inner membrane leaflet being unstained or poorly stained. DLS also appear to form in the region conventional Golgi apparatus but always in association with ER forms that frequently occupy portions of the Golgi apparatus zone.An ability to stain with phosphotungstic acid at low pH exhibited by DLS is given also by the specialized ER forms. One possibility for DLS formation suggested by the present study is that DLS cisternae differentiate from ER membranes after which they ultimately associate into the stacked configurations that characterize mature DLS.  相似文献   

3.
Dictyosome-like structures (DLS) of guinea pig spermatocytes, when prefixed in mixtures of glutaraldehyde and tannic acid, exhibited laminated figures with a repeating periodicity of about 4.5 nm in the spaces between DLS saccules or in association with the surfaces of the DLS saccules. These laminated figures were similar to those figures derived from saturated lipids in other tissues. Alternatively, spaces between saccules were collapsed leaving only thin, electron-dense material separating adjacent saccules. These changes were not observed when the DLS were prefixed in glutaraldehyde before exposure to tannic acid. The presence of laminated figures following fixation with tannic acid and osmium tetroxide suggests that saturated lipids are present in, or associated with, the intersaccular regions of the DLS. The distribution of laminated figures in other membrane structures was not affected by post fixation with tannic acid nor were laminated figures comparable to those of the DLS observed between cisternae of the Golgi apparatus. These results support previous conclusions that DLS are distinct from Golgi apparatus and are a unique component of the germ cell cytoplasm.  相似文献   

4.
Dictyosome-like structures (DLS) occur abundantly in primary spermatocytes of the guinea pig. DLS superficially resemble dictyosomes of Golgi apparatus in that they consist of stacked cisternae and react similarly to some cytochemical markers. DLS saccules are also present in residual bodies and in the cytoplasmic droplet of the sperm, but the stacked configuration (or dictyosome form) is seldom present at these stages of development. A mixture of 1% phosphotungstic acid in 10% chromic acid selectively stains the DLS and DLS saccules of guinea pig germ cells. The thick cisternae of spermatid Golgi apparatus and the sperm plasma membrane also stain, but endoplasmic reticulum and the parts of the Golgi apparatus other than the thick cisternae do not stain. The specificity of the stain is retained in crude homogenates as well as in purified cell fractions and may be helpful in identification of DLS in cell fractionation studies. Additionally, the information obtained provides clues to the origin and fate of DLS in the developing mammalian germ cells.  相似文献   

5.
日本沼虾高尔基体在精子发生过程中的变化   总被引:10,自引:0,他引:10  
杨万喜  堵南山 《动物学报》1998,44(4):377-383
用岸民镜技术研究了日本沼虾精子发生过程中生精细胞内高尔基体变化。结果表明:精原细胞内,高尔基体结构典型,分布在核膜附近,许多膜囊通过过连接小管相互连接。初级精母细胞内,高尔基体结构紧凑且更典型,更造近核膜,在反面的分泌活动旺盛,产生大量初级溶酶体;  相似文献   

6.
Summary Based on cell-free processing whereby membrane glycoproteins from one cell type were processed by enzymes located in Golgi apparatus from another cell type, J. Rothman and colleagues postulated that vesicles budding from one Golgi apparatus stack migrated to and fused with cisternal membranes of other Golgi apparatus stacks in the cell-free milieu. An extension of this hypothesis was that these same or similar vesicles were involved in the trafficking of membrane material from one cisterna to the next even in the same Golgi apparatus stack [W. G. Dunphy, J. E. Rothman: Compartmental organization of the Golgi stack. Cell 42: 13–21 (1985)]. A coated bud revealed by tannic acid-containing fixatives was the morphological entity associated with this intercompartment Golgi apparatus transfer. This report summarizes information from the author's laboratories that suggests that perhaps the majority of these coated buds, while associated with the Golgi apparatus, are not vesicles per se but rather coated ends of tubules. Golgi apparatus tubules have been postulated to permit interconnections among adjacent Golgi apparatus stacks but not to function in transport between contiguous cisternae of the same Golgi apparatus stack.In the interest of scientific discourse, reasoned and constructive replies to views expressed under New Ideas in Cell Biology will be considered for publication. In this case, the responsible editor, to be contacted by respondents, is E. Schnepf.  相似文献   

7.
Summary Tannic acid affects one face of some cytoplasmic membranes causing them to appear thin in electron micrographs.Trans vesicles of Golgi apparatus, dictyosome-like-structures, headcaps and aerosomes of germ cells, and certain lysosomes all have membranes that appear thin after tannic acid fixation and, in addition, are all characterized as being acid phosphatase positive. Thus, thin membranes appear functionally related and to be associated with cellular components that have lysosome or lysosome-like character.  相似文献   

8.
Summary In early diplotene frog oocytes incubated to illustrate thiamine pyrophosphatase (TPPase) activity, reaction product is uniformly distributed within the compartments of the endoplasmic reticulum and nuclear envelope as well as within the saccules and small vesicles comprising the dictyosomes. With continued oocyte development the reaction product becomes concentrated in localized regions of the dictyosome saccules. Eventually, the enzyme is no longer apparent within the endoplasmic reticulum, but is concentrated in the cisternae of the inner dictyosome saccules. The variations noted suggest that the enzyme is synthesized early in diplotene by the endoplasmic reticulum and is subsequently transported to the Golgi apparatus where it is consistently observed at later developmental stages. TPPase activity is also present in the Golgi apparatus of follicle and theca cells as well as in ovarian epithelial cells. The enzyme is also detected in micropinocytotic vesicles contained within the cells comprising the follicle envelope and in intercellular spaces of the follicle. Horseradish peroxidase injected into the coelomic cavity is transported via micropinocytotic vesicles into and through the cells comprising the follicle envelope and in intercellular spaces. The exogenous protein is not found even after a prolonged time period in early diplotene oocytes. The protein is, however, present in large spherical and tubular vesicles in the cortex of vitellogenic oocytes approximately 500 microns in diameter. The possible functional role of the enzyme TPPase during oogenesis is discussed.This investigation was supported by a research grant from the National Science Foundation (GB-8736).  相似文献   

9.
《The Journal of cell biology》1983,96(5):1197-1207
Antibodies directed against membrane components of dog pancreas rough endoplasmic reticulum (A-RER) and rat liver Golgi apparatus (A-Golgi) (Louvard, D., H. Reggio, and G. Warren, 1982, J. Cell Biol. 92:92-107) have been applied to cultured rat prolactin (PRL) cells, either normal cells in primary cultures, or clonal GH3 cells. In normal PRL cells, the A-RER stained the membranes of the perinuclear cisternae as well as those of many parallel RER cisternae. The A-Golgi stained part of the Golgi membranes. In the stacks it stained the medial saccules and, with a decreasing intensity, the saccules of the trans side, as well as, in some cells, a linear cisterna in the center of the Golgi zone. It also stained the membrane of many small vesicles as well as that of lysosomelike structures in all cells. In contrast, it never stained the secretory granule membrane, except at the level of very few segregating granules on the trans face of the Golgi zone. In GH3 cells the A-RER stained the membrane of the perinuclear cisternae, as well as that of short discontinuous flat cisternae. The A-Golgi stained the same components of the Golgi zone as in normal PRL cells. In some cells of both types the A-Golgi also stained discontinuous patches on the plasma membrane and small vesicles fusing with the plasma membrane. Immunostaining of Golgi membranes revealed modifications of membrane flow in relation to either acute stimulation of PRL release by thyroliberin or inhibition of basal secretion by monensin.  相似文献   

10.
This review summarizes the data describing the role of cellular microtubules in transportation of membrane vesicles — transport containers for secreted proteins or lipids. Most events of early vesicular transport in animal cells (from the endoplasmic reticulum to the Golgi apparatus and in the opposite recycling direction) are mediated by microtubules and microtubule motor proteins. Data on the role of dynein and kinesin in early vesicle transport remain controversial, probably because of the differentiated role of these proteins in the movements of vesicles or membrane tubules with various cargos and at different stages of secretion and retrograde transport. Microtubules and dynein motor protein are essential for maintaining a compact structure of the Golgi apparatus; moreover, there is a set of proteins that are essential for Golgi compactness. Dispersion of ribbon-like Golgi often occurs under physiological conditions in interphase cells. Golgi is localized in the leading part of crawling cultured fibroblasts, which also depends on microtubules and dynein. The Golgi apparatus creates its own system of microtubules by attracting γ-tubulin and some microtubule-associated proteins to membranes. Molecular mechanisms of binding microtubule-associated and motor proteins to membranes are very diverse, suggesting the possibility of regulation of Golgi interaction with microtubules during cell differentiation. To illustrate some statements, we present our own data showing that the cluster of vesicles induced by expression of constitutively active GTPase Sar1a[H79G] in cells is dispersed throughout the cell after microtubule disruption. Movement of vesicles in cells containing the intermediate compartment protein ERGIC53/LMANI was inhibited by inhibiting dynein. Inhibiting protein kinase LOSK/SLK prevented orientation of Golgi to the leading part of crawling cells, but the activity of dynein was not inhibited according to data on the movement of ERGIC53/LMANI-marked vesicles.  相似文献   

11.
We have studied the reconstitution of the Golgi apparatus in vivo using an heterologous membrane transplant system. Endogenous glycopeptides of rat hepatic Golgi fragments were radiolabeled in vitro with [3H]sialic acid using detergent-free conditions. The Golgi fragments consisting of dispersed vesicles and tubules with intraluminal lipoprotein-like particles were then microinjected into Xenopus oocytes and their fate studied by light (LM) and electron microscope (EM) radioautography. 3 h after microinjection, radiolabel was observed by LM radioautography over yolk platelet-free cytoplasmic regions near the injection site. EM radioautography revealed label over Golgi stacked saccules containing the hepatic marker of intraluminal lipoprotein-like particles. At 14 h after injection, LM radioautographs revealed label in the superficial cortex of the oocytes between the yolk platelets and at the oocyte surface. EM radioautography identified the labeled structures as the stacked saccules of the Golgi apparatus, the oocyte cortical granules, and the plasmalemma, indicating that a proportion of microinjected material was transferred to the surface via the secretion pathway of the oocyte. The efficiency of transport was low, however, as biochemical studies failed to show extensive secretion of radiolabel into the extracellular medium by 14 h with approximately half the microinjected radiolabeled constituents degraded. Vinblastine (50 microM) administered to oocytes led to the formation of tubulin paracrystals. Although microinjected Golgi fragments were able to effect the formation of stacked saccules in vinblastine-treated oocytes, negligible transfer of heterologous material to the oocyte surface could be detected by radioautography. The data demonstrate that dispersed fragments of the rat liver Golgi complex (i.e., unstacked vesicles and tubules) reconstitute into stacked saccules when microinjected into Xenopus cytoplasm. After the formation of stacked saccules, reconstituted Golgi fragments transport constituents into a portion of the exocytic pathway of the host cell by a microtubule-regulated process.  相似文献   

12.
The three-dimensional structure of the whole Golgi apparatus and of its components in type A ganglion cells was examined in thin and thick sections by low- and high-voltage electron microscopy. At low magnification, in 10-micron-thick sections of osmicated cells, the Golgi apparatus formed a broad, continuous perinuclear network. At higher magnification and in thinner sections of cells impregnated with uranyl acetate-lead-copper citrate or postfixed in K-ferrocyanide-reduced osmium, the Golgi apparatus appeared as a heterogeneous structure in which saccular regions characterized by stacks of saccules alternated with intersaccular regions made up of branching membranous tubules which bridged the saccules of adjacent stacks. The saccular regions consisted of the following superimposed elements: a cis-osmiophilic element made up of anastomosing tubules; two or three saccules negative for the phosphatases tested (i.e., nicotinamide adenine dinucleotide phosphatase = NADPase, thiamine pyrophosphatase = TPPase, and cytidine monophosphatase = CMPase); two saccules showing TPPase activity; and one to three trans-sacculotubular elements showing a "peeling-off" configuration, one of which showed CMPase activity. The saccules (phosphatase-negative) on the cis-side of the Golgi stacks showed, in addition to small circular pores, larger perforations in register. The cavities thus formed in the stacks of saccules, called "wells," always associated with small 80-nm vesicles, had a pan shape with the mouth directed toward the cis-face and the bottom closed by a TPPase-positive saccule. In face views of the saccules, the smallest of these perforations showed either a crescent shape, due to the presence of a bud on one side of the perforation, or a circular shape with a single small 80-nm vesicle in the center which was occasionally attached to the saccule by a filiform stalk. Such smaller cavities were considered as the precursors of the larger perforations and eventually of the wells. The small 80-nm vesicles seen in the small cavities or in the wells appeared to form in situ and possibly migrate toward the cisternae of endoplasmic reticulum seen proximal to the cis-face of the stack of saccules. Small 80-nm vesicles were also numerous in the intersaccular regions, along the lateral- and trans-aspects of the Golgi stacks, while larger, 150-to 300-nm vesicles, coated and uncoated, were seen only on the trans-face of the Golgi stacks in proximity to the trans-sacculotubular elements which appear to "peel off" from the Golgi stacks.  相似文献   

13.
Summary A cytochemical study of acid phosphatase (AcPase) in the lateral prostate of the rat was performed to investigate whether AcP-ase in the secretory apparatus can be distinguished from AcP-ase in lysosomes and their related structures. Two types of AcP-ase were observed in the rat lateral prostate. One was found in the secretory apparatus (Golgi saccules and some Golgi vesicles, condensing and secretory vacuoles), and reacted well with naphthol AS-BI phosphate (N AS-BI P) as substrate; the other was found in the lysosomes and Golgi-associated endoplasmic-reticulum-lysosome system (GERL)-like structure, and reacted well with -glycerophosphate (GP) as substrate. Although the AcP-ase which reacted well with N AS-BI P was also observed in certain portions of pleomorphic lysosomes, it was concluded that it was the same as the AcP-ase found in the condensing and secretory vacuoles, since a lysosome engulfing a condensing vacuole was often observed. Therefore, it is concluded that the AcP-ase in the secretory apparatus in the rat lateral prostate is different from the AcP-ase in lysosomes. Condensing vacuoles appear to originate from particular portions of Golgi saccules, but not from the GERL or GERL-like structure, at least in the rat lateral prostate.  相似文献   

14.
The final envelopment of most herpesviruses occurs at Golgi or post-Golgi compartments, such as the trans Golgi network (TGN); however, the final envelopment site of human herpesvirus 6 (HHV-6) is uncertain. In this study, we found novel pathways for HHV-6 assembly and release from T cells that differed, in part, from those of alphaherpesviruses. Electron microscopy showed that late in infection, HHV-6-infected cells were larger than uninfected cells and contained many newly formed multivesicular body (MVB)-like compartments that included small vesicles. These MVBs surrounded the Golgi apparatus. Mature virions were found in the MVBs and MVB fusion with plasma membrane, and the release of mature virions together with small vesicles was observed at the cell surface. Immunoelectron microscopy demonstrated that the MVBs contained CD63, an MVB/late endosome marker, and HHV-6 envelope glycoproteins. The viral glycoproteins also localized to internal vesicles in the MVBs and to secreted vesicles (exosomes). Furthermore, we found virus budding at TGN-associated membranes, which expressed CD63, adaptor protein (AP-1) and TGN46, and CD63 incorporation into virions. Our findings suggest that mature HHV-6 virions are released together with internal vesicles through MVBs by the cellular exosomal pathway. This scenario has significant implications for understanding HHV-6's maturation pathway.  相似文献   

15.
Summary Maize root tips were fixed in glutaraldehyde fixatives containing tannic acid and then processed for electron microscopy. Under these conditions, tannic acid selectively stained the contents of the Golgi apparatus secretory vesicles of some outer root cap cells, the cell walls of all cells, and substances in, and adjacent to, intercellular connections of mature primary walls and of secondary walls. Intercellular connections of the young primary walls were not stained. Plasma membranes, and substances associated with the outer leaflets of the plasma membranes, were also stained. Tannic acid-positive material was associated with the cell plate vesicles of forming walls but very little, or none, was associated with the Golgi apparatus vesicles of dividing cells.  相似文献   

16.
The parietal layer of the rat yolk sac includes a 5 microliter thick sheet known as Reichert's membrane that exhibits properties of basement membranes. Its inner side is lined by a single layer of loosely distributed cells referred to as endodermal cells. Both Reichert's membrane and endodermal cells were examined at 13-14 days' gestation with emphasis on the ultrastructure of the Golgi apparatus, the identification of its component parts by specific phosphatase activities, and its possible role in the cells' secretory process. Reichert's membrane is composed of a series of stacked layers similar to basal laminae and composed of a network of fibrils with a diameter of 2-8 nm along which dots are located at irregular intervals. The endodermal cells contain the usual organelles, including interconnected rough endoplasmic reticulum (rER) cisternae and a prominent Golgi apparatus. With the help of phosphatase reactions, the stacks of Golgi saccules were divided into a) "phosphatase-free" saccules, the first ones on the cis or forming side, b) one or two "intermediate" saccules in the middle of the stacks, containing nicotinamide adenine dinucleotide phosphatase activity, c) one or two "last" saccules rich in thiamine pyrophosphatase activity on the trans or mature side, and d) continuing beyond the trans side, the GERL element displaying acid phosphatase activity. The latter is associated with profiles equally rich in acid phosphatase and tentatively considered to be prosecretory granules. Finally, the ectoplasm adjacent to Reichert's membrane displays large, acid phosphatase-containing structures tentatively considered to be secretory granules. Thus, the extensive rER network, the well-compartmentalized Golgi apparatus, and the presence of structures which may be prosecretory and secretory granules indicate that the endodermal cells are well-equipped for the secretion of the components of Reichert's membrane.  相似文献   

17.
In rabbit luteal cells embedded in glycolmethacrylate and stained with PTA at low pH highly glycosylated membrane patches can be observed after vesiculation of the trans-Golgi network. As these membranes could be prelysosomal, their sialic acid content was investigated by post-embedding labeling with Limax flavus agglutinin (LFA)/fetuin-Au. Additional labeling of the Golgi apparatus was performed with Wheat germ agglutinin (WGA)/ovomucoid Au, Ricinus communis agglutininI (RCAI)/Au and Helix pomatia agglutinin (HPA)/Au. The sections were then counterstained with PTA at low pH, which allows a clear distinction between the elements of the trans-Golgi network (G2-G1) and the saccules of the stack (g). With WGA, LFA and RCAI the trans-Golgi network was observed to be clearly more reactive than the stack. After vesiculation most intense labeling was found over the highly glycosylated vacuolar membranes derived from the G2-element. The limiting membrane of lysosomes, the MvB's and the plasma membrane also reacted strongly. Colloidal gold particles were also found over the membranes of the vacuoles derived from G1. The Golgi stack showed a lower reactivity and label for all three lectins could be found over three to four saccules of the stack (g3-g4). The matrix of the lysosomes was slightly labeled. Labeling with HPA was absent from the trans saccules and was consistently found in the cis and cis-most (g4-g5) saccules of the stack. Some cytoplasmic vesicles near the cell border were also labeled. With our procedure the Golgi apparatus can easily be detected and it is apparent that in rabbit luteal cells the highest lectin reactivity is found in the trans-Golgi network.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Summary More than twenty different enzyme activities of fractions containing dictyosome-like structures (DLS) as a dominant cell component were monitored. Plasma membrane vesicles were a major contaminant of the DLS fractions, which, presumably as a consequence, were enriched somewhat in plasma membrane markers. The lysosomal enzymes arylsulfatase and latent acid phosphatase were present in the DLS fractions as were the Golgi apparatus activities thiamine pyrophosphatase and nucleoside diphosphatase. The presence of the latter two enzymes in DLS, plus NADH-ferricyanide reductase, has been verified from cytochemistry. On the other hand, the Golgi apparatus marker, galactosyltransferase, was not enriched in DLS fractions and appeared to be absent. This latter finding, verified from cytochemistry with isolated DLS fractions and, in situ, from [3H]galactose incorporation by testis tubules with analysis by autoradiography, provides the first clear biochemical characteristic that serves unequivocally to distinguish DLS from conventional Golgi apparatus.Work supported in part by a grant from the National Institutes of Health HD 11508  相似文献   

19.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

20.
The three-dimensional structure of the components of the Golgi apparatus was analyzed in plasma cells of rat duodenum. The spheroidal juxtanuclear Golgi apparatus was formed by a continuous ribbonlike structure composed of the following stacked elements. On the cis-face of the Golgi stack, there was a tubular membranous network referred to as the cis-element and/or a slightly dilated saccule perforated with small pores. The two or three subjacent saccules, which showed few pores, were slightly dilated and contained a fluffy granulofilamentous material. They were also perforated in register by cavities or wells containing 80-nm vesicles. The next one or two underlying elements were fenestrated saccules showing flattened portions as well as distended portions containing a homogeneous material denser than that seen in the overlying saccules. The last two or three elements of the stack showed a partially separated or "peeling off" configuration. These last elements consisted of prosecretory granules attached to flattened, empty-looking saccules showing buds at their surface; detached, more-or-less fenestrated, flattened saccules; and shrivelled residual trans-tubular networks. In the trans-region of the stack, in addition to numerous small vesicles, short membranous tubules, detached prosecretory granules, and denser fully formed secretion granules were also seen. These images were interpreted to indicate that secretory material present in the trans-saccules flows toward the dilated portions which become prosecretory granules. The trans-most elements seemingly peel off the stack to yield prosecretory granules and fragmenting trans-tubular networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号