共查询到20条相似文献,搜索用时 0 毫秒
1.
Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes 总被引:28,自引:0,他引:28
Christopher J. S. Smith Colin F. Watson Peter C. Morris Colin R. Bird Graham B. Seymour Julie E. Gray Christine Arnold Gregory A. Tucker Wolfgang Schuch Steven Harding Donald Grierson 《Plant molecular biology》1990,14(3):369-379
The role of the cell wall hydrolase polygalacturonase (PG) during fruit ripening was investigated using novel mutant tomato lines in which expression of the PG gene has been down regulated by antisense RNA. Tomato plants were transformed with chimaeric genes designed to express anti-PG RNA constitutively. Thirteen transformed lines were obtained of which five were analysed in detail. All contained a single PG antisense gene, the expression of which led to a reduction in PG enzyme activity in ripe fruit to between 5% and 50% that of normal. One line, GR16, showed a reduction to 10% of normal PG activity. The reduction in activity segregated with the PG antisense gene in selfed progeny of GR16. Plants homozygous for the antisense gene showed a reduction of PG enzyme expression of greater than 99%. The PG antisense gene was inherited stably through two generations. In tomato fruit with a residual 1% PG enzyme activity pectin depolymerisation was inhibited, indicating that PG is involved in pectin degradation in vivo. Other ripening parameters, such as ethylene production, lycopene accumulation, polyuronide solubilisation, and invertase activity, together with pectinesterase activity were not affected by the expression of the antisense gene. 相似文献
2.
用番茄乙烯形成酶(EFE)和多聚半乳糖醛酸酶(PG)反义cDNA转化番茄子叶,获得两个转基因系统。分别比较了两个基因系统果实和叶片的乙烯生成速率、果实中EFE酶活性和果胶酶活性,表明反义EFE基因在番茄工程植株中能显著抑制EFE酶活性和乙烯生成;反义PG基因则主要是抑制其PG酶活性。 相似文献
3.
The use of transgenic and naturally occurring mutants to understand and manipulate tomato fruit ripening 总被引:5,自引:0,他引:5
In the years since we last reviewed the use of mutants to study tomato fruit ripening ( Grierson et al. 1987 ), considerable information has been gained by the cloning, sequencing and identification of many mRNAs implicated in this developmental process. Genes involved in cell wall degradation, colour change and ethylene synthesis have been cloned, and antisense techniques have been developed and used to produce genetically engineered mutant fruit deficient in these aspects of ripening (see Gray et al. 1992 ). Recently, a previously cloned ripening gene has been used to complement a naturally occurring fruit colour mutant, yellow flesh ( Fray & Grierson 1993a ), and a ripening impaired mutant, ripening inhibitor, has been used to identify several new ripening-related mRNAs ( Picton et al. 1993b ). The chromosomal region bearing the ripening inhibitor mutation has been subjected to high-resolution mapping ( Churchill, Giovannoni & Tanksley 1993 ) and chromosome walking experiments are in progress to identify this gene. 相似文献
4.
多聚半乳糖醛酸酶反义基因在转基因番茄中的表达 总被引:3,自引:0,他引:3
番茄的多聚半乳糖醛酸是一种在果实成熟阶段特异性表达的酶。为了研究它在果实成熟中的作用,将其cDNA与花椰菜花叶病毒35S启动子嵌合后,以反义基因的形式经农杆菌介导导入番茄植株,进一步分析了反义基因的整合与表达。结果表明,在转基因番茄中,反义基因的表达能明显抑制果实内源多聚半乳糖醛酸酶的活性。 相似文献
5.
Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission 总被引:21,自引:0,他引:21
Sharon Payton Rupert G. Fray Stephen Brown Don Grierson 《Plant molecular biology》1996,31(6):1227-1231
Using theArabidopsis ethylene receptorETR1 as a probe, we have isolated a tomato homologue (tETR) from a ripening cDNA library. The predicted amino acid sequence is 70% identical toETR1 and homologous to a variety of bacterial two component response regulators over the histidine kinase domain. Sequencing of four separate cDNAs indicates that tETR lacks the carboxyl terminal response domain and is identical to that encoded by the tomatoNever ripe gene. Ribonuclease protection showed tETR mRNA was undetectable in unripe fruit or pre-senescent flowers, increased in abundance during the early stages of ripening, flower senescence, and in abscission zones, and was greatly reduced in fruit of ripening mutants deficient in ethylene synthesis or response. These results suggest that changes in ethylene sensitivity are mediated by modulation of receptor levels during development. 相似文献
6.
Ethylene regulation of fruit ripening: Molecular aspects 总被引:19,自引:0,他引:19
Progress in ethylene regulating fruit ripening concerning itsperception and signal transduction and expression of ACC synthaseand ACC oxidase genes is reviewed. ACC synthase and ACC oxidasehave been characterized and their genes cloned from various fruittissues. Both ACC synthase and ACC oxidase are encoded bymultigene families, and their activities are associated withfruit ripening. In climacteric fruit, the transition toautocatalytic ethylene production appears to be due to a seriesof events in which ACC sythase and ACC oxidase genes have beenexpressed developmentally. Differential expression of ACCsynthase and ACC oxidase gene family members is probably involvedin such a transition that ultimately controls the onset of fruitripening.In comparison to ACC synthase and ACC oxidase, less is knownabout ethylene perception and signal transduction because of thedifficulties in isolating and purifying ethylene receptors orethylene-binding proteins using biochemical methods. However, theidentification of the Nr tomato ripening mutant as anethylene receptor, the applications of new potent anti-ethylenecompounds and the generation of transgenic fruits with reducedethylene production have provided evidence that ethylenereceptors regulate a defined set of genes which are expressedduring fruit ripening. The properties and functions of ethylenereceptors, such as ETR1, are being elucidated.Application of molecular genetics, in combination withbiochemical approaches, will enable us to better understand theindividual steps leading from ethylene perception and signaltransduction and expression of ACC synthase and ACC oxidase genefamily member to the physiological responses. 相似文献
7.
Physiology and firmness determination of ripening tomato fruit 总被引:1,自引:0,他引:1
Tomato ( Lycopersicon esculentum Mill.) genotypes varying in intrinsic firmness were examined to determine the quantitative relationships between polygalacturonase (EC 3.2.1.15) activity, firmness and other ripening parameters including rate (days from mature-green to full red) and intensity (rate of ethylene production at climacteric peak) of ripening. Texture, respiration and ethylene production were monitored in the immature-green through the red (ripe) stages of development. Polygalacturonase activity was measured by direct assay of salt-extractable wall protein or by monitoring the release of pectins from isolated, enzymically active wall. In all fruit, polygalacturonase activity was highly correlated with pericarp softening, but only moderately correlated with softening of whole fruit (r = 0.920 and 0.757, respectively). Polygalacturonase activity was positively correlated with cell-wall autolytic activity in pink (r = 0.969) and red (r = 0.900) fruit. Firmer genotypes exhibited lower rates of respiration and ethylene production during ripening. Polygalacturonase activity in isolates prepared from fruit at the climacteric peak was positively correlated with ethylene production and respiration, and negatively correlated with days to ripening (r = 0.929, 0.805, and -0.791, respectively). The data demonstrate the importance of selecting the appropriate method of firmness determination and are consistent with the hypothesis that pectin fragments released by polygalacturonase contribute to the production of autocatalytic (system II) ethylene. 相似文献
8.
9.
Biochemical basis of high-temperature inhibition of ethylene biosynthesis in ripening tomato fruits 总被引:11,自引:0,他引:11
Biggs, M. S., Woodson, W. R. and Handa, A. K. 1988. Biochemical basis of high-temperature inhibition of ethylene biosynthesis in ripening tomato fruits. Physiol. Plant. 72: 572578
Incubation of fruits of tomato ( Lycopersicon esculentum Mill. cv. Rutgers) at 34°C or above resulted in a marked decrease in ripening-associated ethylene production. High temperature inhibition of ethylene biosynthesis was not associated with permanent tissue damage, since ethylene production recovered following transfer of fruits to a permissive temperature. Determination of pericarp enzyme activities involved in ethylene biosynthesis following transfer of fruits from 25°C to 35 or 40°C revealed that 1-aminocyclopropane-l-carboxylic acid (ACC) synthase (EC 4.4.1.14) activity declined rapidly while ethylene forming enzyme (EFE) activity declined slowly. Removal of high temperature stress resulted in more rapid recovery of ACC synthase activity relative to EFE activity. Levels of ACC in pericarp tissue reflected the activity of ACC synthase before, during, and after heat stress. Recovery of ethylene production following transfer of pericarp discs from high to permissive temperature was inhibited in the presence of cycloheximide, indicating the necessity for protein synthesis. Ethylene production by wounded tomato pericarp tissue was not as inhibited by high temperature as ripening-associated ethylene production by whole fruits. 相似文献
Incubation of fruits of tomato ( Lycopersicon esculentum Mill. cv. Rutgers) at 34°C or above resulted in a marked decrease in ripening-associated ethylene production. High temperature inhibition of ethylene biosynthesis was not associated with permanent tissue damage, since ethylene production recovered following transfer of fruits to a permissive temperature. Determination of pericarp enzyme activities involved in ethylene biosynthesis following transfer of fruits from 25°C to 35 or 40°C revealed that 1-aminocyclopropane-l-carboxylic acid (ACC) synthase (EC 4.4.1.14) activity declined rapidly while ethylene forming enzyme (EFE) activity declined slowly. Removal of high temperature stress resulted in more rapid recovery of ACC synthase activity relative to EFE activity. Levels of ACC in pericarp tissue reflected the activity of ACC synthase before, during, and after heat stress. Recovery of ethylene production following transfer of pericarp discs from high to permissive temperature was inhibited in the presence of cycloheximide, indicating the necessity for protein synthesis. Ethylene production by wounded tomato pericarp tissue was not as inhibited by high temperature as ripening-associated ethylene production by whole fruits. 相似文献
10.
Keith Redenbaugh Ted Berner Don Emlay Bill Frankos William Hiatt Cathy Houck Matt Kramer Lori Malyj Belinda Martineau Nancy Rachman Larisa Rudenko Rick Sanders Ray Sheehy Roger Wixtrom 《In vitro cellular & developmental biology. Plant》1993,29(1):17-26
Summary Significant progress has been made in development of transgenic plants containing agriculturally useful genes. Concurrent
with scientific advances has been development of a regulatory infrastructure within the U.S. Department of Agriculture (USDA)
for assessing safety of controlled release of genetically engineered plants into the environment, as well as creation of a
food policy by the Food and Drug Administration (FDA). Field trials and safety assessments of tomato containing an antisense
polygalacturonase gene (FLAVR SAVR™ tomato) have been conducted. A detailed safety analysis of thekan
r selectable marker was also done. Based on these data plus nutritional measurements, lack of changes in levels of natural
toxins, and lack of any unintended changes, we have requested that the USDA and FDA determine that this genetically engineered
tomato is safe for release into the environment and human consumption.
Presented in the Session-in-Depth “Field Test Requirements and Performance of Transgenic Plants” at the 1991 World Congress
on Cell and Tissue Culture, Anaheim, California, June 16–20, 1991. 相似文献
11.
The activities of four mitochondrial enzymes were studied in four stages of ripening tomato fruit. The highest enzyme activity was recorded for malate dehydrogenase followed by cytochrome c oxidase. Succinate dehydrogenase and NADH oxidase levels were low and could only be determined in the green stage of the fruit. However, peaks of various enzyme activities coincided in identical mitochondrial fractions on the sucrose density gradient. Moreover, the levels of malate dehydrogenase and cytochrome c oxidase were constant during the ripening process while the other two enzymes, succinate dehydrogenase and NADH oxidase, declined. This might indicate that mitochondria retain some of their essential functions through the ripening process. 相似文献
12.
13.
Effects of tissue position (viz. outer vs inner mesocarp) and heat treatment (48°C, 20 min) on variations in polygalacturonase (EC 3.2.1.15 and EC 3.2.1.67) activity and ripening of fruits of Carica papaya L. cv. Backcross Solo were investigated. Polygalacturonase activity increased during ripening concomitantly with an increase in tissue softness and soluble polyuronide level. Throughout ripening, inner mesocarp tissue was softer and contained higher polygalacturonase activity than outer mesocarp tissue. Titratable acidity as well as ß-galactosidase (EC 3.2.1.23) activity also increased during ripening; however, unlike polygalacturonase, their level or activity was lower in inner than in outer mesocarp. Ascorbic acid could partially account for the increase in titratable acidity during ripening but contributed very little to the differences in titratable acid levels between outer and inner mesocarp. Heat treatment had no effect on either fruit softness or titratable acidity, but it markedly reduced the increase in ascorbic acid and polygalacturonase activity during ripening. Ripening, as reflected by changes in tissue softness and polygalacturonase activity, progressed outwardly from the interior towards the exterior of the fruit. The effect of heat treatment in suppressing polygalacturonase activity was relatively greater in inner than in outer mesocarp, suggesting that sensitivity of the enzyme to heat treatment may vary with stage of ripeness of the tissue. 相似文献
14.
In extracts from pericarp tissue of ripening tomato ( Lycopersicon esculentum Mill. cv, Sonato) fruits, two isoenzymes of polygalacturonase (E.C. 3.2.1.15), PG1 and PG2, are usually found. Also in such extracts, or as part of PG1, a convertor (CV) occurs. Incubation of PG2 with this CV gives rise to PG1 or a different isoenzyme, PGx, that is also stable at 65°C but differs in p H optimum and size from PG1. It appears that CV has two affinity sites that can bind with PG2 or with a polydextran. PG1 is an extraction artifact, consisting of one molecule of CV and two molecules of PG2. PGx is made up of one molecule of CV and one molecule of PG2. It is the CV part of PGx that binds to polydextrans such as Blue Dextran 2000, Sephadex G-100, and cell wall preparations. In this last form PGx is the physiologically active form of the enzyme, solubilizing demethylated pectin.
On Sephacryl S-300, CV appears to have a molecular weight of 81 kDa, but because of its heat stability and partial leakage through a 10 kDa cut-off membrane, it might be a much smaller, rod-like molecule. The polygalacturonase convertor might be a lectin without intrinsic enzyme activity, with a function to immobilize, stabilize and activate enzymic proteins in the cell wall. 相似文献
On Sephacryl S-300, CV appears to have a molecular weight of 81 kDa, but because of its heat stability and partial leakage through a 10 kDa cut-off membrane, it might be a much smaller, rod-like molecule. The polygalacturonase convertor might be a lectin without intrinsic enzyme activity, with a function to immobilize, stabilize and activate enzymic proteins in the cell wall. 相似文献
15.
Ken C. Gross Alley E. Watada Meung Su Kang Soon Dong Kim Kwang Soo Kim Sung Woo Lee 《Physiologia plantarum》1986,66(1):31-36
Hot pepper ( Capsicum annuum L. cv. Chooraehong) fruit underwent a respiratory climacteric during ripening. However, the rate of ethylene production was low, reaching a maximum of approximately 0.7 μl kg−1 h−1 at the climacteric peak when the surface color was 30 to 40% red. Ripening was accompanied by a loss of galactose and arabinose residues from the cell wall. The content of uronic acid and cellulose in the wall changed only slightly during ripening. The average molecular weight of a cell wall hemicellulosic fraction shifted progressively toward a lower molecular weight during ripening. Total β-galactosidase (EC 3.2.1.23) activity increased 50-fold from the immature green to the red ripe stage. No polygalacturonase (EC 3.2.1.15) activity was detected at any stage of ripeness. Thus, the loss of galactose and arabinose residues from the cell wall, as well as the observed modification of hemicelluloses during ripening, seem to be unrelated to active polygalacturonase. Soluble polyuronide content remained relatively constant at approximately 60 μg (g fresh weight)−1 as fruit ripended. 相似文献
16.
园艺作物成熟和衰老的分子生物学 总被引:3,自引:0,他引:3
对园艺作物乙烯和果实成熟、乙烯生物合成途径中二个关键酶ACC合成酶和ACC氧化酶的分子特性,基因克隆和表达及转基因研究等方面问题进行了评述。 相似文献
17.
Antonio Cutillas-Iturralde Ignacio Zarra Ester P. Lorences 《Physiologia plantarum》1993,89(2):369-375
Pectins from persimmon ( Diospyros kaki L.) fruit pericarp were sequentially extracted with 0. 05 M trans -1,2-diaminocyclohexane-N,N, N', N'-tetraacetic acid (CDTA), 0. 05 M Na2 CO3 (1°C) and Na2 CO3 (20°C) and the carbohydrate composition and metabolism during development determined. Young persimmon fruits contained a large proportion of pectins, 46% by dry weight, that decreased to 20% with ripening. This decrease occurred in the CDTA and Na2 CO3 (1°C) fractions, mainly composed of uronic acids, and represents a net loss of uronic acids, arabinose and galactose. The amount of non-cellulosic neutral sugars was especially high in the Na2 CO3 (20°C) fraction. The loss of pectins was also accompanied by a depolymerisation of the polysaccharides extracted in the three pectic fractions. However, none of these changes can be attributed to the action of polygalacturonase activity. Proteins were extracted from the pericarp tissue, but endopolygalacturonase (EC 3. 2. 1. 15) activity, determined as a decrease in viscosity of polygalacturonic acid, was not observed in the extract. Determination of exopolygalacturonase (EC 3. 2. 1. 67) activity by measuring the release of reducing groups from polygalacturonic acid was also negative. The results presented indicate that polygalacturonase is not responsible for the metabolism of pectins during persimmon fruit ripening. 相似文献
18.
19.
Iso-accepting forms of tRNAmet, tRNAleu, tRNAlys, and tRNAtyr were isolated from combined walls and septa of tomato fruits at 5 consecutive stages of ethylene induced ripening. Changes in the relative amount of some tRNAleu and tRNAlys were discerned 10hr after exposure to ethylene. Individual patterns of change for each of several iso-acceptor tRNAs were evident throughout the ripening sequence. Maximal changes were: tRNAlys, ?66.3%; tRNAleu, ?24.8%; and tRNAmet, +26.7%. 相似文献