首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flagella of Methanococcus voltae were isolated by using three procedures. Initially, cells were sheared to release the filaments, which were purified by differential centrifugation and banding in KBr gradients. Flagella were also prepared by solubilization of cells with 1% (vol/vol) Triton X-100 and purified as described above. Both of these techniques resulted in variable recovery and poor yield of flagellar filaments. Purification of intact flagella (filament, hook, and basal body) was achieved by using phase transition separation with Triton X-114. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified flagella revealed two major proteins, with molecular weights of 33,000 and 31,000. This result indicates the likely presence of two flagellins. The filament had a diameter of 13 nm. The basal structure consisted of a small knob, while a slight thickening of the filament immediately adjacent to this area was the only evidence of a hook region. Flagella from three other Methanococcus species were isolated by this technique and found to have the same ultrastructure as flagella from M. voltae. Isolation of flagella from three eubacteria and another methanogen (Methanospirillum hungatei [M. hungatii]) by the phase separation technique indicated that the detergent treatment did not affect the structure of basal bodies. Intact ring structures and well-differentiated hook regions were apparent in each of these flagellar preparations.  相似文献   

2.
In high (45 mM)-phosphate medium, Methanospirillum hungatei strains GP1 and JF1 grew as very long, nonmotile chains of cells that did not possess flagella. However, growth in lower (3 or 30 mM)-phosphate medium resulted in the production of mostly single cells and short chains that were motile by means of two polar tufts of flagella, which transected the multilayered terminal plug of the cell. Electron microscopy of negatively stained whole mounts revealed a flagellar filament diameter of approximately 10 nm. Flagellar filaments were isolated from either culture fluid or concentrated cell suspensions that were subjected to shearing. Flagellar filaments were sensitive to treatment with both Triton X-100 and Triton X-114 at concentrations as low as 0.1% (vol/vol). The filaments of both strains were composed of two flagellins of Mr 24,000 and 25,000. However, variations in trace element composition of the medium resulted in the production of a third flagellin in strain JF1. This additional flagellin appeared as a ladderlike smear on sodium dodecyl sulfate-polyacylamide gels with a center of intensity of Mr 35,000 and cross-reacted with antisera produced from filaments containing only the Mr-24,000 and -25,000 flagellins. On sodium dodecyl sulfate-polyacrylamide gels, all flagellins stained by the thymol-sulfuric acid and Alcian blue methods, suggesting that they were glycosylated. This was further supported by chemical deglycosylation of the strain JF1 flagellins, which resulted in a reduction in their apparent molecular weight on sodium dodecyl sulfate-polyacylamide gels. Heterologous reactions to sera raised against the flagella from each strain were limited to the Mr-24,000 flagellins.  相似文献   

3.
Flagellar filaments from Methanospirillum hungatei GP1 and JF1 were isolated and subjected to a variety of physical and chemical treatments. The filaments were stable to temperatures up to 80 degrees C and over the pH range of 4 to 10. The flagellar filaments were dissociated in the detergents (final concentration of 0.5%) Triton X-100, Tween 20, Tween 80, Brij 58, N-octylglucoside, cetyltrimethylammonium bromide, and Zwittergent 3-14, remaining intact in only two of the detergents tested, sodium deoxycholate and 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate (CHAPS). Spheroplasting techniques were used to separate the internal cells from the complex sheath, S-layer (cell wall), and end plugs of M. hungatei. The flagellar basal structure was visualized after solubilization of membranes by CHAPS or deoxycholate. The basal structure appeared to be a simple knob with no apparent ring or hook structures. The multiple, glycosylated flagellins constituting the flagellar filaments were cleaved by proteases and cyanogen bromide. The cyanogen bromide-generated fragments of M. hungatei GP1 flagellins were partially sequenced to provide internal sequence information. In addition, the amino acid composition of each flagellin was determined and indicated that the flagellins are distinct gene products, rather than differentially glycosylated forms of the same gene product.  相似文献   

4.
Purified flagellar filaments isolated from six methanogens were composed of multiple flagellins. Two flagellins were present in Methanococcus deltae (M r =34000 and 32000), Methanoculleus marisnigri (M r =31000 and 25500) and Methanococcus jannaschii (M r =31000 and 27500), three in Methanothermus fervidus (M r =34000, 25000 and 24000) and four or more in both Methanococcus vanniellii and Methanococcus maripaludis (M r ranging from 27500 to 32000). The flagellins of M. fervidus and M. deltae reacted positively with glycoprotein-specific stains. The flagellins of M. deltae, M. maripaludis and M. vannielii were closely related to those of M. voltae based on cross-reactivity with antisera raised against M. voltae flagellins and homology with flagellin-specific oligonucleotide probes to the N-terminus and leader peptide of M. voltae flagellins. Similarities appear to exist among the flagellins of M. fervidus, M. marisnigri and Halobacterium halobium based on cross-reactivity with antisera produced against the flagella of Methanospirillum hungatei JF1. The N-termini of the flagellins from the mesophilic Methanococcus spp. and M. marisnigri show homology with the N-termini of other archaebacterial flagellins. These N-termini may undergo a modification involving removal of a leader peptide.  相似文献   

5.
Methanococcus voltae is a mesophilic archaeon with flagella composed of flagellins that are initially made with 11- or 12-amino-acid leader peptides that are cleaved prior to incorporation of the flagellin into the growing filament. Preflagellin peptidase activity was demonstrated in immunoblotting experiments with flagellin antibody to detect unprocessed and processed flagellin subunits. Escherichia coli membranes containing the expressed M. voltae preflagellin (as the substrate) were combined in vitro with methanogen membranes (as the enzyme source). Correct processing of the preflagellin to the mature flagellin was also shown directly by comparison of the N-terminal sequences of the two flagellin species. M. voltae preflagellin peptidase activity was optimal at 37 degrees C and pH 8.5 and in the presence of 0.4 M KCl with 0.25% (vol/vol) Triton X-100.  相似文献   

6.
The organic solvents methanol and ethanol at concentrations of 2.5% and 5% (v/v), respectively, were found to significantly (P < 0.001) decrease the radius of curvature and track velocity of S. commercialis sperm. To observe the effects of the solvent directly on the axoneme, S. commercialis sperm models were prepared by extraction with Triton X-100 and reactivation with ATP in media containing acetate anions, DTT, magnesium, and cAMP. Concentrations of 0.1% Triton X-100 demembranated sperm while 0.01% and 0.05% Triton X-100 permeabilized sperm. Sperm models were successfully produced after reactivation with 1 mM ATP. At pH 8.25, 1% (v/v) ethanol or methanol was observed to increase waveform asymmetry and significantly (P < 0.001) decrease track velocity of 0.1% Triton X-100 demembranated sperm models. Similarly 1% (v/v) ethanol increased tailwave asymmetry and decreased track velocity of 0.01% and 0.05% Triton X-100 permeabilized sperm models. Reactivated motility of 0.05% Triton X-100 permeabilized sperm models prepared at pH 7.8 were poor and improved after treatment with 7% (v/v) ethanol, which increased waveform asymmetry and doubled the track velocity of sperm. This stimulatory effect of ethanol was unchanged in the presence of the alcohol dehydrogenase inhibitor pyrazole. Concerning the precise mechanism of action of ethanol on the axoneme, we conclude that a stimulatory or inhibitory effect of ethanol is dependent on the pH of the sperm model system used.  相似文献   

7.
Large-pool solvent/detergent (SD) plasma for transfusion exhibits reduced alpha 2-antiplasmin (alpha2-AP; SERPINF2) functional activity. The reason for the loss of alpha2-AP has not been described and could be due to the SD incubation itself and/or to the processing steps implemented to remove the solvent and the detergent. We have studied alpha2-AP activity during six down-scale preparations of plasma virally-inactivated by 1% (v/v) TnBP combined with two different non-ionic detergents, either 1% Triton X-100 or 1% Triton X-45, at 31 degrees C for 4h. The SD-treated plasmas were then extracted with 7.5% (v/v) soybean oil, centrifuged at 3800 x g for 30 min, and subjected to hydrophobic interaction chromatography (HIC) to remove the SD agents. Control runs without TnBP and Triton were performed to evidence possible impacts of each process step on alpha2-AP activity. TnBP, Triton X-100, and Triton X-45 were measured at all stages of the processes to evaluate potential interferences with the alpha2-AP assay. Alpha 2-AP activity was about 10% that of starting plasma after 1% TnBP-1% Triton X-100 incubation and about 50% after oil extractions, centrifugation, and HIC. By contrast about 73% of the antiplasmin activity was found after the incubation with 1% TnBP and 1% Triton X-45, 88% after removal of the SD agents by oil extractions, 90% after centrifugation and 92% after HIC. The control runs performed without SD agents showed that the process steps did not affect the alpha2-AP activity. In conclusion, the agent altering alpha2-AP activity in SD-plasma is Triton X-100. The choice of detergents for the SD viral inactivation of therapeutic plasma fractions used in patients at risk of fibrinolysis should consider the impact on alpha2-AP activity.  相似文献   

8.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

9.
The presence of low concentrations of methanol or isopropyl alcohol (2-5%, v/v) in the assay medium stabilizes the latency of dynein 1 from sea urchin sperm flagella, with about a 50% decrease in ATPase level compared to that in the absence of solvent. Somewhat higher concentrations (10-20%, v/v) of these solvents in the assay give a 5-10-fold activation of ATPase activity. Dioxane, formamide, and dimethylformamide, on the other hand, always activate the ATPase activity, with a 5-10-fold increase observed at about 15% (v/v). The activation of latent ATPase activity by solvents is reversible for short exposures, especially in the presence of ATP and at low temperature, but the activation becomes irreversible upon more prolonged exposure. The rate constant for irreversible activation by 16% methanol at 21 degrees C is 0.08 min-1, compared to rates of 0.44 and 0.02 min-1 for activation by 0.05% Triton X-100 at 21 and 0 degree C, respectively. The slowness of this reversible activation induced by methanol and by Triton X-100 suggests that it is the result of large-scale conformational changes in the structure of the dynein. However, the activation by methanol occurs without the dissociation of the alpha and beta subunits of dynein that is observed with Triton X-100. The presence of 1 mM MgATP, or of 100 microM MgATP and 10 microM vanadate substantially protects latent dynein from activation by 0.05% Triton X-100.  相似文献   

10.
—Highly purified fractions of synaptic vesicles were prepared from rat cerebrum or cerebral cortex by density gradient centrifugation. Treatment of synaptic vesicle fractions by autoincubation, freeze-thawing and sonication in an isotonic alkaline-salt medium or in 0·1-0·3% (v/v) Triton X-100 released increasing quantities of synaptic vesicle protein and phospholipid into solution. When the soluble synaptic vesicle proteins were extracted with 0·1% (v/v) Triton X-100, the insoluble residue consisted mostly of 5–8 nm-thick membranes resembling the limiting membranes of intact synaptic vesicles. This finding, together with other considerations, suggested that the soluble proteins and accompanying phospholipids originated from the interior of the synaptic vesicles. A 0·3% (v/v) Triton X-100 extract of synaptic vesicle was fractionated by ultracentrifugal flotation and dialysis into three lipoprotein fractions: a low density lipoprotein (d < 1·21 g/ml), a high density lipoprotein (d = 1·21–1·35 g/ml) and a very high density lipoprotein (d > 1·35 g/ml). The phospholipid contents of the low, high and very high density lipoprotein fractions were 0·74, 0·38 and 0·20 mg/mg of protein, respectively. All three apolipoproteins had a high ratio of acidic to basic, and of polar to nonpolar, amino acids, and were rich in glycine, alanine and serine. Polyacrylamide gel electrophoresis of the alkaline-salt and Triton X-100 extracts of synaptic vesicles at pH 8·8 resolved a single anionic component which stained for protein, lipid (Sudan black B; iodine) and anionic groups (acridine orange). Polyacrylamide gel electrophoresis of synaptic vesicle extracts at pH 2·7 in 5 m urea and 0·25% (v/v) Triton X-100 resolved about 20 protein components. However, the protein profiles of electropherograms of the Triton X-100 and alkaline-salt extracts differed in certain respects, suggesting that these media to some extent solubilized different proteins. However, most of the protein bands in electropherograms of the Triton X-100 and alkaline-salt extracts also stained for lipid and anionic groups. In addition, two lipoprotein components in the alkaline-salt extract and four in the Triton X-100 extract contained carbohydrate. Isoelectric focusing of synaptic vesicle extracts resolved 6–8 protein fractions. The major fraction in Triton X-100 and alkaline-salt extracts had an apparent isoelectric point of approximately 4·2 and contained 0·24 mg of phospholipid per mg of protein. Soluble synaptic vesicle proteins released by incubating, freeze-thawing and sonicating in the alkaline-salt medium, and protein fractions of the latter obtained by electrofocusing had an absorption maximum of 260–265 nm which was enhanced in a cold 0·5 n perchloric acid extract, an observation suggesting the presence of a bound nucleotide. These findings demonstrate that rat brain synaptic vesicles contain a heterogenous array of soluble acidic lipoproteins which vary in buoyant density, lipid content, amino acid and carbohydrate composition and electrophoretic mobility in polyacrylamide gels. These acidic lipoproteins apparently comprise the bulk of the macromolecular contents of synaptic vesicles and probably serve as ‘carrier’ proteins for the binding and sequestration of the neurotransmitters.  相似文献   

11.
Porcine enteropeptidase (EC 3.4.21.9) purified from acetone powders of fresh duodenal fluid shows a molecular weight, as determined on Ultragel AcA-34, of 190000. Enteropeptidase has been solubilised from pig intestinal mucosa using 1% (v/v) Triton X-100. When Triton X-100 extracts of freeze-dried mucosa after partial fractionation on DEAE-cellulose were chromatographed on Sephadex G-200, the bulk of the activity eluted in the void volume rather than with an expected Ve/V0 ratio of about 1.24 corresponding to a molecular weight of around 200000. Gel filtration of aqueous mucosal extracts obtained in the absence of Triton X-100 showed two regions of enzymic activity in approximately equal proportions, one in the void volume, and the other with the expected Ve/V0 ratio of 1.24, whereas the Triton X-100 extracts of the residue from the above extract showed the presence of only the macromolecular species of enteropeptidase. This species was excluded from Sepharose 4B. It was confirmed that aminopeptidase was also extracted by Triton X-100 in a molecular form which was excluded from Sepharose 4B. The results suggest that Triton X-100 extracts enteropeptidase with a membrane component attached and in agreement with this it was found that proteolysis rapidly converted the macromolecular form to a stable smaller molecular species corresponding in size to that found in solution in the duodenal fluid. There was full recovery of the enzymic activity following this conversion. Papain and trypsin brought about an almost complete conversion to the smaller form of enteropeptidase whereas chymotrypsin, pancreatin and an intestinal peptidase preparation were only partially effective. It is concluded that membrane bound enzymes such as enteropeptidase and aminopeptidase are bound to the intestinal brush border membrane in a similar manner and are not actively secreted into the lumen but rather are largely released or solubilised by the combined action of the bile and pancreatic secretions.  相似文献   

12.
A method to estimate protein in detergent-solubilized homogenates of lipid-rich biological samples (e.g., adipose tissue, myelin-enriched fractions of sheep brain) is described. The method is also suitable for samples in which protein is present as a protein-detergent complex. The method involves homogenization of tissue in the presence of a suitable detergent and KCl. Protein is then estimated in an aliquot of this homogenate by Lowry's method in the presence of excess sodium dodecyl sulfate, the solutions being clarified by extraction with ethyl acetate. Protein solubilization by Triton X-100 from adipose tissue was biphasic, extracting two to three times more protein under optimum conditions [1.7 +/- 0.1% (v/v) Triton X-100 and 0.75 M KCl], compared with homogenization without salt and detergent. Unlike adipose tissue, protein solubilization from myelin-enriched fractions of sheep brain peaked at 1% (v/v) Triton X-100, resulting in the extraction of approximately three times more protein than homogenization in the absence of detergent and salt.  相似文献   

13.
Triton X-100 is known to affect phospholipid metabolism and the generation of various signal molecules from cellular phospholipids. In the present work the effect of Triton X-100 on phospholipid metabolism of human decidua and of the primordial placenta (chorion frondosum) was studied. Triton X-100 (0.05%, v/v) added to tissue mince 30 min before the end of a 60 min incubation stimulated 2-4-fold (decidua) and 4-6-fold (placenta) the incorporation of [32P]phosphate ([32P]Pi) into phosphatidic acid, while markedly decreasing the labeling of phosphatidylcholine. Triton X-100 had no effect on the labeling of phosphatidylinositol in the decidua, and only a slight increase was observed in the placenta. When labeled glucose was used to assess phospholipid synthesis, the addition of Triton had no effect on phosphatidic acid, while decreasing the synthesis of phosphatidylcholine. Incorporation of [32P]Pi into phosphatidic acid was not accelerated by a submicellar concentration (0.01%) of Triton, whereas the synthesis of phosphatidylcholine was decreased irrespective of detergent concentration. Anionic or cationic detergents could not mimic the action of Triton on phosphatidic acid synthesis. Although Triton inhibited the synthesis of ATP in a dose-dependent manner, this could not account for the above results. Instead, it is suggested that diacylglycerol kinase and phosphocholine:CTP cytidylyltransferase are possible targets of the action of Triton X-100.  相似文献   

14.
The structural interaction of the epidermal growth factor (EGF) receptor and the cytoskeleton of A431 cells has been studied using a monoclonal anti-EGF receptor antibody. This has been done with immunogold labeling using a variety of electron microscopical preparation procedures and EGF binding studies. By providing an image of the membrane-associated cytoskeleton, the dry cleavage method reveals a preferential localization of EGF receptors superimposed upon cytoskeletal filaments. The colocalization of gold particles with cytoskeletal filaments is not affected when pre-labeled cells are extracted with the non-ionic detergent Triton X-100, as visualized by dry cleavage. Using surface replication, this treatment results in visualization of the cytoskeleton. In these latter preparations, it is also observed that EGF receptor-coupled gold particles remain associated with cytoskeletal elements. Moreover, Triton extraction performed before immunogold labeling of EGF receptors demonstrates that isolated cytoskeletons contained binding sites for anti-EGF receptor antibodies. Using stereo micrographs of replica's obtained from these isolated cytoskeletons, it is shown that gold-labeled EGF receptors are exclusively present on the cortical membrane-associated region of the cytoskeleton and not on more intracellular-located filaments. Scatchard analysis of EGF binding to cells fixed with glutaraldehyde and treated with Triton X-100 before and after EGF binding indicates that a high affinity EGF binding site is associated with the Triton X-100 insoluble cytoskeleton.  相似文献   

15.
S Leterme  M Boutry 《Plant physiology》1993,102(2):435-443
NADH:ubiquinone reductase (EC 1.6.19.3), or complex I, was isolated from broad bean (Vicia faba L.) mitochondria. Osmotic shock and sequential treatment with 0.2% (v/v) Triton X-100 and 0.5% (w/v) [3-cholamidopropyl)dimethylammonio]-1-propanesulfate (CHAPS) removed all other NADH dehydrogenase activities. Complex I was solubilized in the presence of 4% Triton X-100 and then purified by sucrose-gradient centrifugation in the presence of the same detergent. The second purification step was hydroxylapatite chromatography. Substitution of CHAPS for Triton X-100 helped remove contaminants such as ATPase. The high molecular mass complex is composed of at least 26 subunits with molecular masses ranging from 6000 to 75,000 kD. The purified complex I reduced ferricyanide and ubiquinone analogs but not cytochrome c. NADPH could not substitute for NADH as an electron donor. The KM for NADH was 20 microM at the optimum pH of 8.0. The NH2-terminal sequence of several subunits was determined, revealing the ambiguous nature of the 42-kD subunit.  相似文献   

16.
The activities of acetylcholinesterase and Ca2+ + Mg2+ ATPase were measured following treatment of human erythrocyte membranes with nonsolubilizing and solubilizing concentrations of Triton X-100. A concentration of 0.1% (v/v) Triton X-100 caused a significant inhibition of both enzymes. The inhibition appears to be caused by perturbations in the membrane induced by Triton X-100 incorporation. No acetylcholinesterase activity and little Ca2+ + Mg2+ ATPase activity were detected in the supernatant at 0.05% Triton X-100 although this same detergent concentration induced changes in the turbidity of the membrane suspension. Also, no inhibition of soluble acetylcholinesterase was observed over the entire detergent concentration range. The inhibition of these enzymes at 0.1% Triton X-100 was present over an eightfold range of membrane protein in the assay indicating an independence of the protein/detergent ratio. The losses in activities of these two enzymes could be prevented by either including phosphatidylserine in the Triton X-100 suspension or using Brij 96 which has the same polyoxyethylene polar head group but an oleyl hydrophobic tail instead of the p-tert-octylphenol group of Triton X-100. The results are discussed in regard to the differential recovery of enzyme activities over the entire detergent concentration range.  相似文献   

17.
Isolated flagellar filaments of Sulfolobus shibatae were 15 nm in diameter, and they were composed of two major flagellins which have M(r)s of 31,000 and 33,000 and which stained positively for glycoprotein. The flagellar filaments of Thermoplasma volcanium were 12 nm in diameter and were composed of one major flagellin which has an M(r) of 41,000 and which also stained positively for glycoprotein. N-terminal amino acid sequencing indicated that 18 of the N-terminal 20 amino acid positions of the 41-kDa flagellin of T. volcanium were identical to those of the Methanococcus voltae 31-kDa flagellin. Both flagellins of S. shibatae had identical amino acid sequences for at least 23 of the N-terminal positions. This sequence was least similar to any of the available archaeal flagellin sequences, consistent with the phylogenetic distance of S. shibatae from the other archaea studied.  相似文献   

18.
Octylphenoxy polyoxyethylene ethers (Triton detergents) interact with the erythrocyte membrane in a biphasic manner, i.e. they stabilize erythrocytes against hypo-osmotic haemolysis at low concentrations (0.0001-0.01%, v/v), but become haemolytic at higher concentrations. This biphasic behaviour was demonstrated with Triton X-114, Triton X-100 and Triton X-102. However, a critical chain length is a prerequisite for the haemolytic effect, because Triton X-45, which differs from the other Tritons only by the shorter chain of the polyoxyethylene residue, does not exhibit this biphasic behaviour, but goes on protecting against osmotic rupture up to saturating concentrations. Even a 1% solution of Triton X-45 does not cause haemolysis. This structural specificity of Triton X-45, namely the lack of haemolysis and efficient stabilization against osmolysis even at higher concentrations of the detergent, is exhibited at 0 degree and 37 degrees C as well as at room temperature. Three conclusions are reached: (i) a critical chain length of the octylphenoxy polyoxyethylene ethers is required for the haemolytic effect; (ii) the different structural requirements would suggest that different mechanisms are responsible for the haemolytic and the stabilizing effect of amphiphilic substances; (iii) the results suggest that haemolysis is not caused simply by dissolution of the membrane by the detergent but is a rather more specific process.  相似文献   

19.
All of the commercially available Triton X-100 examined gave Compound I upon reaction with horseradish peroxidase, followed by its gradual transition into Compound II. Titration of horseradish peroxidase with Triton X-100 to form Compound I indicated that 1% (v/v) aqueous solutions of the detergent contained 0.4 to 3.2 microM equivalent peroxide but iodometric titration revealed 1.1 to 5.0 microM peroxide, suggesting the occurrence of different types of peroxides, reactive and unreactive with the peroxidase. The rate constant for Compound I formation was 1.5 X 10(7) M-1 S-1 at pH 7.4 at 25 degrees C, and for conversion into Compound II apparent first-order rate constants were 5.2 X 10(-3) to 1.7 X 10(-2) S-1. These results indicate that the Triton peroxides are as highly reactive as hydrogen peroxide. The amount of Triton peroxides increased as aqueous solutions of the detergent were allowed to stand, but the peroxides were destroyed by treatment with sodium borohydride. Although freshly prepared aqueous solutions of sodium cholate, sodium dodecyl sulfate, Tween 20 (polyoxyethylene sorbitan monolaurate), and Emasol 1130 (an equivalent of Tween 20) did not contain any detectable amount of peroxide, aged solutions of sodium dodecyl sulfate and Emasol 1130 contained peroxides. These observations suggest the need for appropriate precautions when biologically active substances vulnerable to attack by peroxides are incubated with Triton X-100 either for their solubilization from biomembranes or for other processing.  相似文献   

20.
We have shown previously that a nuclear phosphatidylinositol (PI) 4-kinase activity was present in intact nuclei isolated from carrot suspension culture cells (Daucus carota L.). Here, we further characterized the enzyme activity of the nuclear enzyme. We found that the pH optimum of the nuclear-associated PI kinase varied with assay conditions. The enzyme had a broad pH optimum between 6.5–7.5 in the presence of endogenous substrate. When the substrate was added in the form of phosphatidylinositol/phosphatidylserine (PI/PS) mixed micelles (1 mM PI and 400 μM PS), the enzyme had an optimum of pH 6.5. In comparison, the pH optimum was 7.0 when PI/Triton X-100 mixed micelles (1 mM PI in 0.025 %, v/v final concentration of Triton X-100) were used. The nuclear-associated PI kinase activity increased 5-fold in the presence of low concentrations of Triton X-100 (0.05 to 0.3 %, v/v); however, the activity decreased by 30 % at Triton X-100 concentrations greater than 0.3 % (v/v). Calcium at 10 μM inhibited 100 % of the nuclear-associated enzyme activity. The Km for ATP was estimated to be between 36 and 40 μM. The nuclear-associated PI kinase activity was inhibited by both 50 μM ADP and 10 μM adenosine. Treatment of intact nuclei with DNase, RNase, phospholipase A2 and Triton X-100 did not solubilize the enzyme activity. Based on sensitivity to calcium, ADP, detergent, pH optimum and the product analysis, the nuclear-associated PI 4-kinase was compared with previously reported PI kinases from plants, animals and yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号