首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Nitric oxide (NO) has been postulated to be required, together with reactive oxygen species (ROS), for the activation of the hypersensitive reaction, a defense response induced in the noncompatible plant-pathogen interaction. However, its involvement in activating programmed cell death (PCD) in plant cells has been questioned. In this paper, the involvement of the cellular antioxidant metabolism in the signal transduction triggered by these bioactive molecules has been investigated. NO and ROS levels were singularly or simultaneously increased in tobacco (Nicotiana tabacum cv Bright-Yellow 2) cells by the addition to the culture medium of NO and/or ROS generators. The individual increase in NO or ROS had different effects on the studied parameters than the simultaneous increase in the two reactive species. NO generation did not cause an increase in phenylalanine ammonia-lyase (PAL) activity or induction of cellular death. It only induced minor changes in ascorbate (ASC) and glutathione (GSH) metabolisms. An increase in ROS induced oxidative stress in the cells, causing an oxidation of the ASC and GSH redox pairs; however, it had no effect on PAL activity and did not induce cell death when it was generated at low concentrations. In contrast, the simultaneous increase of NO and ROS activated a process of death with the typical cytological and biochemical features of hypersensitive PCD and a remarkable rise in PAL activity. Under the simultaneous generation of NO and ROS, the cellular antioxidant capabilities were also suppressed. The involvement of ASC and GSH as part of the transduction pathway leading to PCD is discussed.  相似文献   

2.
To gain some insight into the mechanism of plant programmed cell death, certain features of cytochrome c (cyt c) release were investigated in heat-shocked tobacco (Nicotiana tabacum) Bright-Yellow 2 cells in the 2- to 6-h time range. We found that 2 h after heat shock, cyt c is released from intact mitochondria into the cytoplasm as a functionally active protein. Such a release did not occur in the presence of superoxide anion dismutase and catalase, thus showing that it depends on reactive oxygen species (ROS). Interestingly, ROS production due to xanthine plus xanthine oxidase results in cyt c release in sister control cultures. Maximal cyt c release was found 2 h after heat shock; later, activation of caspase-3-like protease was found to increase with time. Activation of this protease did not occur in the presence of ROS scavenger enzymes. The released cyt c was found to be progressively degraded in a manner prevented by either the broad-range caspase inhibitor (zVAD-fmk) or the specific inhibitor of caspase-3 (AC-DEVD-CHO), which have no effect on cyt c release. In the presence of these inhibitors, a significant increase in survival of the cells undergoing programmed cell death was found. We conclude that ROS can trigger release of cyt c, but do not cause cell death, which requires caspase-like activation.  相似文献   

3.
Alternaria alternata has received considerable attention in current literature and most of the studies are focused on its pathogenic effects on plant chloroplasts, but little is known about the characteristics of programmed cell death (PCD) induced by metabolic products (MP) of A. alternata, the effects of the MP on mitochondrial respiration and its relation to PCD. The purpose of this study was to explore the mechanism of MP-induced PCD in non-green tobacco BY-2 cells and to explore the role of mitochondrial inhibitory processes in the PCD of tobacco BY-2 cells. MP treatment led to significant cell death that was proven to be PCD by the concurrent cytoplasm shrinkage, chromatin condensation and DNA laddering observed in the cells. Moreover, MP treatment resulted in the overproduction of reactive oxygen species (ROS), rapid ATP depletion and a respiratory decline in the tobacco BY-2 cells. It was concluded that the direct inhibition of the mitochondrial electron transport chain (ETC), alternative pathway (AOX) capacity and catalase (CAT) activity by the MP might be the main contributors to the MP-induced ROS burst observed in tobacco BY-2 cells. The addition of adenosine together with the MP significantly inhibited ATP depletion without preventing PCD; however, when the cells were treated with the MP plus CAT, ROS overproduction was blocked and PCD did not occur. The data presented here demonstrate that the ROS burst played an important role in MP-induced PCD in the tobacco BY-2 cells.  相似文献   

4.
To find out whether and how proteasome is involved in plant programmed cell death (PCD) we measured proteasome function in tobacco cells undergoing PCD as a result of heat shock (HS-PCD). Reactive oxygen species (ROS) production, cytochrome c levels and caspase-3-like protease activation were also measured in the absence or presence of MG132, a proteasome inhibitor. We show that proteasome activation occurs in early phase of HS-PCD upstream of the caspase-like proteases activation; moreover inhibition of proteasome function by MG132 results in prevention of PCD perhaps due to the prevention of ROS production, cytochrome c release and caspase-3-like protease activation.  相似文献   

5.
An increase in the production of reactive oxygen species (ROS) is a typical event occurring during different stress conditions and activating conflicting responses in plants. In order to investigate the relevance of different timing and amounts of ROS production, tobacco (Nicotiana tabacum) Bright Yellow-2 (TBY-2) cells were incubated with different amounts of glucose plus glucose oxidase, for generating H(2)O(2) during time, or directly with known amounts of H(2)O(2). Data presented here indicate that, in TBY-2 cells, a difference in H(2)O(2) level is a critical point for shifting metabolic responses towards strengthening of antioxidant defences, or their depletion with consequent cell death. Timing of ROS production is also critical because it can determine programmed cell death (PCD) or necrosis. Depending on the different kinds of activated cell death, ascorbate (ASC) and glutathione (GSH) pools are altered differently. Moreover, an H(2)O(2)-dependent activation of nitric oxide synthesis is triggered only in the conditions inducing PCD. Ascorbate peroxidase (APX) has been analysed under different conditions of H(2)O(2) generation. Under a threshold value of H(2)O(2) overproduction, a transient increase in APX occurs, whereas under conditions inducing cell necrosis, the activity of APX decreases in proportion to cell death without any evident alteration in APX gene expression. Under conditions triggering PCD, the suppression of APX involves both gene expression and alteration of the kinetic characteristics of the enzyme. The changes in ASC, GSH and APX are involved in the signalling pathway leading to PCD, probably contributing to guaranteeing the cellular redox conditions required for successful PCD.  相似文献   

6.
Plant survival under heat stress requires the activation of proper defence mechanisms to avoid the impairment of metabolic functions. Heat stress leads to the overproduction of reactive oxygen species (ROS) in the cell. In plants, the ascorbate (ASC)-GSH cycle plays a pivotal role in controlling ROS levels and cellular redox homeostasis. Ascorbate peroxidase (APX) is the enzyme of this cycle mainly involved in ROS detoxification. In this study, the ASC-GSH cycle enzymes were analysed in the cytosol, mitochondria and plastids of tobacco Bright Yellow-2 cultured cells. The cells were also subjected to two different heat shocks (HSs; 35 or 55°C for 10 min) and the cell compartments were isolated in both conditions. The results reported here indicate that moderate HS (35°C) does not affect cell viability, whereas cell exposure to 55°C HS induces programmed cell death (PCD). In relation to ASC-GSH cycle, the three analysed compartments have specific enzymatic profiles that are diversely altered by the HS treatments. The cytosol contains the highest activity of all ASC-GSH cycle enzymes and the data reported here suggest that it acts as a redox buffer for the whole cells. In particular, the cytosolic APX seems to be the most versatile enzyme, being its activity enhanced after moderate HS and reduced during PCD induction, whereas the other APX isoenzymes are only affected in the cells undergoing PCD. The relevance of the changes in the different ASC-GSH cycle isoenzymes in allowing cell survival or promoting PCD is discussed.  相似文献   

7.
Mitochondrial morphology and dynamics were investigated during the onset of cell death in Arabidopsis thaliana. Cell death was induced by either chemical (reactive oxygen species (ROS)) or physical (heat) shock. Changes in mitochondrial morphology in leaf tissue, or isolated protoplasts, each expressing mitochondrial-targeted green fluorescent protein (GFP), were observed by epifluorescence microscopy, and quantified. Chemical induction of ROS production, or a mild heat shock, caused a rapid and consistent change in mitochondrial morphology (termed the mitochondrial morphology transition) that preceded cell death. Treatment of protoplasts with a cell-permeable superoxide dismutase analogue, TEMPOL, blocked this morphology change. Incubation of protoplasts in micromolar concentrations of the calcium channel-blocker lanthanum chloride, or the permeability transition pore inhibitor cyclosporin A, prevented both the mitochondrial morphology transition and subsequent cell death. It is concluded that the observed mitochondrial morphology transition is an early and specific indicator of cell death and is a necessary component of the cell death process.  相似文献   

8.
Salt Stress-induced Programmed Cell Death in Rice Root Tip Cells   总被引:11,自引:0,他引:11  
Salt stressed rice root tips were used to investigate the changes of reactive oxygen species (ROS) and antioxidant enzymes at the early stages of programmed cell death (PCD). The results indicated that 500 mmol/L NaCI treatment could lead to specific features of PCD in root tips, such as DNA ladder, nuclear condense and deformation, and transferase mediated dUTP nick end labeling positive reaction, which were initiated at 4 h of treatment and pro- gressed thereafter. Cytochrome c release from mitochondria into cytoplasm was also observed, which occurred at 2 h and was earlier than the above nuclear events. In the very early phase of PCD, an immediate burst in hydrogen peroxide and superoxide anion production rate was accompanied by two-phase changes of superoxide dismutases and ascorbate peroxidase. A short period of increase in the activity was followed by prolonged impairment. Thus, we conclude that salt can induce PCD in rice root tip cells, and propose that in the early phase of rice root tip cell PCD, salt stress-induced oxidative burst increased the antioxidant enzyme activity, which, in turn, scavenged the ROS and abrogated PCD. Also, when the stress is prolonged, the antioxidant system is damaged and accumulated ROS induces the PCD process, which leads to cytochrome c release and nuclear change.  相似文献   

9.
The status of mitochondrial permeability transition pore (PTP) and levels of reactive oxygen species (ROS) play key roles in regulating apoptosis in animal cells. To investigate if the PTP and cellular oxidation-reduction state are also involved in salt stress-induced programmed cell death (PCD) in tobacco (Nicotiana tabacum, cultivar BY-2) protoplasts, flow cytometry was used to simultaneously monitor ROS levels, PTP status and PCD. Increased ROS and decreased mitochondrial membrane potential (delta psi(m)) were observed before the appearance of PCD. Pre-treatment with an inhibitor of the PTP opening, cyclosporin A (CsA), effectively retarded the onset of PCD, the delta psi(m) decrease and the ROS content increase. Addition of ascorbic acid (AsA) during the salt stress significantly decreased the percentage of protoplasts undergoing PCD and ROS levels but increased delta psi(m). Hydrogen peroxide effectively induced the appearance of PCD and caused an increase in ROS and a decrease in delta psi(m). Pre-treatment of protoplasts with CsA weakened the effects of H2O2. All these results suggest that the open state of PTP and ROS are necessary elements for salt stress-induced PCD in tobacco protoplasts. The open states of PTP and ROS could promote each other suggesting that ROS could lead to a self-amplifying process. This positive feedback loop may act as an all-or-nothing switch, which is in good accordance with the hypothesis that PTP is an important coordinator and executioner of PCD in both animals and plants.  相似文献   

10.
镉胁迫引起烟草悬浮细胞程序性死亡   总被引:7,自引:0,他引:7  
镉胁迫会造成烟草悬浮细胞大规模死亡。通过TUNEL技术和琼脂糖凝胶电泳技术的检测发现,这种细胞死亡伴随有典型的DNA“梯形带”出现,表明这种由Cd胁迫引起的细胞死亡是一种程序性死亡。受胁迫细胞氧化性增强及细胞中丙二醛(MDA)水平升高,说明Cd胁迫时会在细胞中造成大量活性氧(ROS),暗示烟草细胞的程序性死亡可能与ROS有关。  相似文献   

11.
The objective of this study was to investigate the specific role of nitric oxide (NO) in the early response of hulless barley roots to copper (Cu) stress. We used the fluorescent probe diaminofluorescein-FM diacetate to establish NO localization, and hydrogen peroxide (H2O2)-special labeling and histochemical procedures for the detection of reactive oxygen species (ROS) in the root apex. An early production of NO was observed in Cu-treated root tips of hulless barley, but the detection of NO levels was decreased by supplementation with a NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO). Application of sodium nitroprusside (a NO donor) relieved Cu-induced root inhibition, ROS accumulation and oxidative damage, while c-PTIO treatment had a synergistic effect with Cu and further enhanced ROS levels and oxidative stress. In addition, the Cu-dependent increase in activities of superoxide dismutase, peroxidase and ascorbate peroxidase were further enhanced by exogenous NO, but application of c-PTIO decreased the activities of catalase and ascorbate peroxidase in Cu-treated roots. Subsequently, cell death was observed in root tips and was identified as a type of programed cell death (PCD) by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The addition of NO prevented the increase of cell death in root tips, whereas inhibiting NO accumulation further increased the number of cells undergoing PCD. These results revealed that NO production is an early response of hulless barley roots to Cu stress and that NO contributes to Cu tolerance in hulless barley possibly by modulating antioxidant defense, subsequently reducing oxidative stress and PCD in root tips.  相似文献   

12.
While the role of C2-ceramide in the induction of programmed cell death (PCD) in animal systems has been well documented, little is known of its role in plant cells. Here we show that C2-ceramide induces PCD in Arabidopsis suspension cultures, which is preceded by the generation of a calcium transient and an increase in reactive oxygen species (ROS). Inhibition of the calcium transient prevented cell death, whereas inhibition of ROS had no effect on cell survival. These observations suggest that calcium signalling plays a role in ceramide-induced PCD but is independent of the generation of ROS.  相似文献   

13.
Recently we have found that the drug amiodarone induces apoptosis in yeast, which is mediated by reactive oxygen species (ROS). Here we have used this finding as a tool to screen for genes involved in the death program. We have described a novel mitochondrial protein, Ysp2, acting in the amiodarone-induced death cascade. After amiodarone addition both the control and amiodarone-resistant ysp2-deleted cells formed ROS, but the mutant (unlike the control) did not undergo the mitochondrial thread-to-grain transition. To test whether the action of Ysp2 is amiodarone-specific we tried to induce PCD by other agents. We have found that acetic acid-induced PCD also depends on Ysp2. We also demonstrate that, like acetic acid, propionic acid or nigericin triggered intracellular acidification causing ROS-dependent death. We suggest that intracellular acidification results in the protonation of superoxide anion (O2-*) to form HO2, one of the most aggressive ROS, which in turn induces Ysp2-mediated PCD.  相似文献   

14.
15.
16.
Qi Y  Wang H  Zou Y  Liu C  Liu Y  Wang Y  Zhang W 《FEBS letters》2011,(1):231-239
In this study, we identified and functionally characterized the mitochondrial heat shock protein 70 (mtHsp70). Over-expression of mtHsp70 suppressed heat- and H2O2-induced programmed cell death (PCD) in rice protoplasts, as reflected by higher cell viability, decreased DNA laddering and chromatin condensation. Mitochondrial membrane potential (Δψm) after heat shock was destroyed gradually in protoplasts, but mtHsp70 over-expression showed higher Δψm relative to the vector control cells, and partially inhibited cytochrome c release from mitochondria to cytosol. Heat treatment also significantly increased reactive oxygen species (ROS) generation, a phenomenon not observed in protoplasts over-expressing mtHsp70. Together, these results suggest that mtHsp70 may suppress PCD in rice protoplasts by maintaining mitochondrial Δψm and inhibiting the amplification of ROS.  相似文献   

17.
Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells.  相似文献   

18.
Using the mRNA differential display technique, seven cDNAs have been isolated that are rapidly induced when cultured tobacco (Nicotiana tabacum) cells are treated with the mitochondrial electron transport inhibitor antimycin A (AA). Interestingly, six of the cDNAs show distinct similarity to genes known to be induced by processes that involve programmed cell death (PCD), such as senescence and pathogen attack. All of the cDNAs as well as Aox1, a gene encoding the alternative oxidase, were found to also be strongly induced by H2O2 and salicylic acid (SA). AA, H2O2 and SA treatment of tobacco cells caused a rapid rise in intracellular ROS accumulation that, when prevented by antioxidant treatment, resulted in inhibition of gene induction. Besides AA, both H2O2 and SA were found to disrupt normal mitochondrial function resulting in decreased rates of electron transport and a lowering of cellular ATP levels. Furthermore, the pre-treatment of tobacco cells with bongkrekic acid, a known inhibitor of the mitochondrial permeability transition pore in animal cells, was found to completely block gene induction when AA, H2O2 or SA were subsequently added. These findings suggest that the mitochondrion may serve an important role in conveying intracellular stress signals to the nucleus, leading to alterations in gene expression.  相似文献   

19.
Methyl jasmonate (MeJa) is a well-known plant stress hormone. Upon exposure to stress, MeJa is produced and causes activation of programmed cell death (PCD) and defense mechanisms in plants. However, the early events and the signaling mechanisms of MeJa-induced cell death have yet to be fully elucidated. To obtain some insights into the early events of this cell death process, we investigated mitochondrial dynamics, chloroplast morphology and function, production and localization of reactive oxygen species (ROS) at the single-cell level as well as photosynthetic capacity at the whole-seedling level under MeJa stimulation. Our results demonstrated that MeJa induction of ROS production, which first occurred in mitochondria after 1 h of MeJa treatment and subsequently in chloroplasts by 3 h of treatment, caused a series of alterations in mitochondrial dynamics including the cessation of mitochondrial movement, the loss of mitochondrial transmembrane potential (MPT), and the morphological transition and aberrant distribution of mitochondria. Thereafter, photochemical efficiency dramatically declined before obvious distortion in chloroplast morphology, which is prior to MeJa-induced cell death in protoplasts or intact seedlings. Moreover, treatment of protoplasts with ascorbic acid or catalase prevented ROS production, organelle change, photosynthetic dysfunction and subsequent cell death. The permeability transition pore inhibitor cyclosporin A gave significant protection against MPT loss, mitochondrial swelling and subsequent cell death. These results suggested that MeJa induces ROS production and alterations of mitochondrial dynamics as well as subsequent photosynthetic collapse, which occur upstream of cell death and are necessary components of the cell death process.  相似文献   

20.
Plant cells undergoing programmed cell death (PCD) at late stages typically show chromatin condensation and endonucleolytic cleavage prior to obvious membrane or organelle ultrastructural changes. To investigate possible early PCD-associated events, we used microscopic observations and flow cytometry to quantitate mitochondrial membrane potential (DeltaPsim) changes during PCD at the single cell and population levels using Arabidopsis protoplasts. A DeltaPsim loss was commonly induced early during plant PCD and was important for PCD execution, as evidenced by the concomitant reduction of the change in DeltaPsim and PCD by cyclosporin A, which inhibits mitochondrial permeability transition pores in animal cells. DeltaPsim loss occurred prior to nuclear morphological changes and was only associated with mitochondrial cytochrome c release (an apoptotic trigger in animals) in response to one of three PCD elicitors. Three different stimuli in wild type implicated DeltaPsim changes in PCD: ceramide, protoporphyrin IX, and the hypersensitive response elicitor AvrRpt2. Additionally, the behavior of the conditional ectopic cell death mutant accelerated cell death2 and ACD2-overproducing plants also implicated DeltaPsim alteration as key for PCD execution. Because ACD2 is largely a chloroplast component in mature plants, the observation that the cell death in acd2 mutants requires changes in mitochondrial functions implicates communication between chloroplasts and mitochondria in mediating PCD activation. We suggest that DeltaPsim loss is a common early marker in plant PCD, similar to what has been documented in animals. However, unlike in animal cells, in plant cells, mitochondrial cytochrome c release is not an obligatory step in PCD control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号