首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The muscles proximal to the autotomy plane in the walking legs of two crab species,Eriphia spinifrons andCarcinus maenas, are innervated by the common inhibitory neuron (CI). Thus, CI is truly common to all 11 leg muscles. It is suggested that CI has the essential function in all leg muscles of preventing the tonic muscle fibers from participating in rapid contraction and relaxation cycles during walking.Abbreviation CI common inhibitory neuron On leave of absence from: Laboratoire de Neurobiologie Comparée, C.N.R.S. Université de Bordeaux I, Place du Docteur Bertrand Peyneau, F-33120 Arcachon, France  相似文献   

2.
Summary The muscles of the pyloric region of the stomach of the crab,Cancer borealis, are innervated by motorneurons found in the stomatogastric ganglion (STG). Electrophysiological recording and stimulating techniques were used to study the detailed pattern of innervation of the pyloric region muscles. Although there are two Pyloric Dilator (PD) motorneurons in lobsters, previous work reported four PD motorneurons in the crab STG (Dando et al. 1974; Hermann 1979a, b). We now find that only two of the crab PD neurons innervate muscles homologous to those innervated by the PD neurons in the lobster,Panulirus interrruptus. The remaining two PD neurons innervate muscles that are innervated by pyloric (PY) neurons inP. interruptus. The innervation patterns of the Lateral Pyloric (LP), Ventricular Dilator (VD), Inferior Cardiac (IC), and PY neurons were also determined and compared with those previously reported in lobsters. Responses of the muscles of the pyloric region to the neurotransmitters, acetylcholine (ACh) and glutamate, were determined by application of exogenous cholinergic agonists and glutamate. The effect of the cholinergic antagonist, curare, on the amplitude of the excitatory junctional potentials (EJPs) evoked by stimulation of the pyloric motor nerves was measured. These experiments suggest that the differences in innervation pattern of the pyloric muscles seen in crab and lobsters are also associated with a change in the neurotransmitter active on these muscles. Possible implications of these findings for phylogenetic relations of decapod crustaceans and for the evolution of neural circuits are discussed.Abbreviations ACh acetylcholine - Carb carbamylcholine - cpv muscles of the cardio-pyloric valve - cpv7n nerve innervating muscle cpv7 - cv muscles of the ventral cardiac ossicles - cv1n nerve innervating muscle cvl - cv2n nerve innervating muscle cv2 - EJP excitatory junctional potential - IC inferior cardiac neuron - IV inferior ventricular neuron - IVN inferior ventricular nerve - LP lateral pyloric neuron - LPG lateral posterior gastric neuron - lvn lateral ventricular nerve - mvn medial ventricular nerve - p muscles of the pylorus - PD pyloric dilator neuron - PD in intrinsic PD neuron - PD ex extrinsic PD neuron - pdn pyloric dilator nerve - PY pyloric neuron - pyn pyloric nerve - STG stomatogastric ganglion - VD ventricular dilator neuron  相似文献   

3.
Summary The temperature-sensitive mutation shibire (shi) in Drosophila melanogaster is thought to disrupt membrane recycling processes, including endocytotic vesicle pinch-off. This mutation can perturb the development of nerves and muscles of the adult escape response. After exposure to a heat pulse (6 h at 30° C) at 20 h of pupal development, adults have abnormal flight muscles. Wing depressor muscles (DLM) are reduced in number from the normal six to one or two fibers, and are composed of enlarged fibers that appear to represent fiber fusion; large spaces devoid of muscle fibers suggested fiber deletion. The normal five motor axons are present in the peripheral nerve PDMN near the ganglion. However, while some motor axons pass dorsally to the extant fibers, other motor axons lacking end targets pass into an abnormal posterior branch and terminate in a neuroma, i.e., a tangle of axons and glia without muscle target tissue. Hemisynapses are common in axons of the proximal PDMN and within the neuroma, but they are rarely seen in control (no heat pulse) shi or wild-type flies. All surviving muscle fibers are innervated; no muscle tissue exists without innervation. Fibrillar fine structure and neuromuscular synapses appear normal. Fused fibers have dual innervation, suggesting correct and specific matching of target tissue and motor axons. Motor axons lacking target fibers do not innervate erroneous targets but instead terminate in the neuroma. These results suggest developmental constraints and rules, which may contribute to the orderly, stereotyped development in the normal flight system. The nature of the anomalies inducible in the flight motor system in shi flies implies that membrane recycling events at about 20 h of pupal development are critical to the formation of the normal adult nerve-muscle pattern for DLM flight muscles.  相似文献   

4.
The forwards-walking portly crab, Libinia emarginata is an ancient brachyuran. Its phylogenetic position and behavioral repertoire make it an excellent candidate to reveal the adaptations, which were required for brachyuran crabs to complete their transition to sideways-walking from their forwards-walking ancestors. Previously we showed that in common with other forwards-walking (but distantly related) crustaceans, L. emarginata relies more heavily on its more numerous proximal musculature to propel itself forward than its sideways-walking closer relatives. We investigated if the proximal musculature of L. emarginata is innervated by a greater number of motor neurons than that of sideways-walking brachyurans. We found the distal musculature of spider crabs is innervated by a highly conserved number of motor neurons. However, innervation of its proximal musculature is more numerous than in closely-related (sideways-walking) species, resembling in number and morphology those described for forwards-walking crustaceans. We propose that transition from forward- to sideways-walking in crustaceans involved a decreased role for the proximal leg in favor of the more distal merus–carpus joint.  相似文献   

5.
Summary In the crickets, Gryllus campestris and Gryllus bimaculatus, the innervation of the dorso-ventral neck muscles M62, M57, and M59 was examined using cobalt staining via peripheral nerves and electrophysiological methods. M62 and M57 are each innervated by two motoneurons in the suboesophageal ganglion. The four motoneurons project into the median nerve to bifurcate into the transverse nerves of both sides. M62 and M57 are the only neck muscles innervated via this route. These bifurcating axon-projections are identical to those of the spiracular motoneurons in the prothoracic ganglion innervating the opener and closer muscle of the first thoracic spiracle in the cricket. The morphology of their branching pattern is described. The neck muscle M57 and the opener muscle of the first thoracic spiracle are additionally innervated by one mesothoracic motoneuron each, with similar morphology. These results suggest, that in crickets, the neck muscles M57 and M62 are homologous to spiracular muscles in the thoracic segments. The two neck muscles M62 and M59 (the posterior neighbour of M57) receive projections from a prothoracic dorsal unpaired median (DUM) neuron that also innervates dorsal-longitudinal neck muscles but not M57. In addition, one or two mesothoracic DUM neurons send axon collaterals intersegmentally to M59. This is the first demonstration of the innervation of neck muscles by DUM neurons.  相似文献   

6.
The leech whole-body shortening reflex consists of a rapid contraction of the body elicited by a mechanical stimulus to the anterior of the animal. We used a variety of reduced preparations — semi-intact, body wall, and isolated nerve cord — to begin to elucidate the neural basis of this reflex in the medicinal leech Hirudo medicinalis. The motor pattern of the reflex involved an activation of excitatory motor neurons innervating dorsal and ventral longitudinal muscles (dorsal excitors and ventral excitors respectively), as well as the L cell, a motor neuron innervating both dorsal and ventral longitudinal muscles. The sensory input for the reflex was provided primarily by the T (touch) and P (pressure) types of identified mechanosensory neuron. The S cell network, a set of electrically-coupled interneurons which makes up a fast conducting pathway in the leech nerve cord, was active during shortening and accounted for the shortest-latency excitation of the L cells. Other, parallel, interneuronal pathways contributed to shortening as well. The whole-body shortening reflex was shown to be distinct from the previously described local shortening behavior of the leech in its sensory threshold, motor pattern, and (at least partially) in its interneuronal basis.Abbreviations conn connective - DE dorsal excitor motor neuron - DI dorsal inhibitor motor neuron - DP dorsal posterior nerve - DP:B1 dorsal posterior nerve branch 1 - DP:B2 dorsal posterior nerve branch 2 - MG midbody ganglion - VE ventral excitor motor neuron - VI ventral inhibitor motor neuron  相似文献   

7.
Summary The highly mobile cyclopic compound eye of Daphnia magna is rotated by six muscles arranged as three bilateral pairs. The three muscles on each side of the head share a common origin on the carapace and insert dorsally, laterally and ventrally on the eye. The dorsal and ventral muscles are each composed of two muscle fibers and the lateral muscle is composed of from two to five fibers, with three the most common number. Individual muscle fibers are spindle-shaped mononucleated cells with organized bundles of myofilaments. Lateral eye-muscle fibers are thinner than those of the other muscles but are otherwise similar in ultrastructure. Two motor neurons innervate each dorsal and each ventral muscle and one motor neuron innervates each lateral muscle. The cell bodies of the motor neurons are situated dorsally in the supraesophageal ganglion (SEG) and are ipsilateral to the muscles they innervate. The dendritic fields of the dorsal-muscle motor neurons are ipsilateral to their cell bodies; those of the ventral-muscle motor neurons are bilateral though predominantly contralateral. The central projections of the lateral-muscle motor neurons are unknown. In the dorsal and ventral muscles one motor axon synapses principally with one muscle fiber; in each lateral muscle the single motor axon branches to, and forms synapses with, all the fibers. The neuromuscular junctions, characterized by pre- and postsynaptic densities and clear vesicles, are similar in all the eye muscles.  相似文献   

8.
The interactions between invasive exotic and indigenous species can have profound harmful effects on the recipient community; however, not all such interactions are negative. Facilitation is increasingly recognised as important in shaping natural communities and is believed to vary under different conditions. Earlier studies have shown that the indigenous intertidal mussel Perna perna initially facilitates survival of the invasive Mytilus galloprovincialis in the low mussel zone by providing protection against waves, but later excludes M. galloprovincialis through interference competition for space. Here, we examined interactions between these species in the mid and upper mussel zones, moving mussels to experimental plots in different combinations of densities and species. Mussels were left on the shore for more than a year and treatment effects on mortality, shell length and condition were compared. In the high zone, treatment had no effects and P. perna showed greater mortality than M. galloprovincialis, indicating that its exclusion from the high shore is due to emersion stress. In the mid zone, treatment had no significant effects on M. galloprovincialis, but multiple comparisons among treatments involving P. perna showed that facilitation occurred. P. perna survived better at higher densities, but survived even better when mixed with the physiologically more tolerant M. galloprovincialis. Length data indicated both inter- and intraspecific competition for P. perna in the mid zone. Whereas facilitation occurs strongly in the low zone (P. perna facilitates M. galloprovincialis) and weakly in the mid zone (M. galloprovincialis facilitates P. perna), the lack of facilitation in the high zone suggests that the probability of facilitation is not linearly linked to increasing physical stress. Instead it is likely to be hump shaped: relatively unimportant under conditions that are benign for a particular species, significant under more severe conditions, and overridden by physical stress under very harsh conditions.  相似文献   

9.
1.  Muscles of the posterior cardiac plate (pcp) and pyloric regions in the stomach of Squilla are innervated by motoneurons located in the stomatogastric ganglion (STG). The pattern of innervation of various muscles in these regions was determined using electrophysiological methods.
2.  The dilator muscles are singly or doubly innervated by the pyloric dilator neurons (PDs). The constrictor muscles are singly or doubly innervated by the pcp neuron (PCP) or the pyloric neurons (PYs). These muscles are sequentially activated by pcp-pyloric motor outputs produced by the PCP, PY, and PD. All muscles can generate an all-or-nothing spike.
3.  The constrictor muscles generate spikes followed by depolarizing afterpotentials which lead to a sustained depolarization with repetitive spikes. The PYs can entrain rhythmic spike discharges of these muscles.
4.  The spike of muscles remains unchanged by bath application of tetrodotoxin (10-7 M) to suppress neuronal impulse activities, but it is blocked by Mn2+ (10 mM).
5.  The constrictor muscle isolated from the STG displays an endogenous property of spontaneous membrane oscillation that produces a train of spikes. Brief depolarizing or hyperpolarizing stimuli can trigger or terminate an oscillatory potential, respectively, and reset the subsequent rhythm.
6.  The possible functions of myogenicity under the control of discharges of motoneurons in the pyloric constrictor neuromuscular system are discussed.
  相似文献   

10.
We have monitored the patterns of activation of five muscles during flight initiation of Drosophila melanogaster: the tergotrochanteral muscle (a mesothoracic leg extensor), dorsal longitudinal muscles #3, #4 and #6 (wing depressors), and dorsal ventral muscle #Ic (a wing elevator). Stimulation of a pair of large descending interneurons, the giant fibers, activates these muscles in a stereotypic pattern and is thought to evoke escape flight initiation. To investigate the role of the giant fibers in coordinating flight initiation, we have compared the patterns of muscle activation evoked by giant fiber stimulation with those during flight initiations executed voluntarily and evoked by visual and olfactory stimuli. Visually elicited flight initiations exhibit patterns of muscle activation indistinguishable from those evoked by giant fiber stimulation. Olfactory-induced flight initiations exhibit patterns of muscle activation similar to those during voluntary flight initiations. Yet only some benzaldehyde-induced and voluntary flight initiations exhibit patterns of muscle activation similar to those evoked by giant fiber stimulation. These results indicate that visually elicited flight initiations are coordinated by the giant fiber circuit. By contrast, the giant fiber circuit alone cannot account for the patterns of muscle activation observed during the majority of olfactory-induced and voluntary flight initiations.Abbreviations DLM/DLMn dorsal longitudinal muscle/motor neuron - DVM/DVMn dorsal ventral muscle/motor neuron - GF(s) giant fiber interneuron (s) - PSI peripherally synapsing interneuron - TTM/TTMn tergotrochanteral muscle/motor neuron  相似文献   

11.
Synopsis Herbivory by wide-ranging fishes is common over tropical reefs, but rare in temperate latitudes where the effects of herbivorous fishes are thought to be minimal. Along the west coast of North America, herbivory by fishes on nearshore reefs is largely restricted to a few members of the Kyphosidae, distributed south of Pt. Conception. This paper presents information on natural diets and results from feeding choice experiments for two abundant kyphosids from intertidal habitats in San Diego, California —Girella nigricans andHermosilla azurea, and similar data for the lined shore crab,Pachygrapsus crassipes, which also forages over intertidal reefs. These results are compared with the availability of algae in intertidal habitats measured during summer and winter, on both disturbed and undisturbed habitats. The diets of juveniles ofG. nigricans andH. azurea collected from nearshore habitats were dominated by animal prey (mainly amphipods), but adults of these fishes, andP. crassipes, consumed algae nearly exclusively, with 26, 10, and 14 taxa of algae identified fromG. nigricans, H. azurea, andP. crassipes, respectively. Algae with sheet-like morphologies (e.g.Ulva sp.,Enteromorpha sp., members of the Delesseriaceae) were the principal algae in the diets of the fishes, and calcareous algae (e.g.Corallina sp.,Lithothrix aspergillum) and sheet-like algae (Enteromorpha sp.) comprised the greatest identifiable portion of the shore crab's diet. Feeding choice experiments indicated that the fishes preferred filamentous algae (e.g.Centroceras clavulatum, Polysiphonia sp.,Chondria californica) and sheet-like algae (e.g.Enteromorpha sp.,Ulva sp.,Cryptopleura crispa) over other algal morphologies, whereas the shore crab chose jointed calcareous algae (e.g.Lithothrix aspergillum, Corallina vancouveriensis, Jania sp.) most frequently. The diets and preferences for algae by the fishes were generally most similar to the assemblage of algae available in early successional (disturbed) habitats during summer when sheet-like and filamentous algae are abundant. The shore crab exhibited the opposite trend with a diet more similar to late successional (undisturbed) habitats.  相似文献   

12.
Ground dwelling spiders are important predators in the detrital food web, which plays important roles in nutrient cycling and energy flow in forest ecosystems. The cursorial spider assemblage in a Beech-Maple forest in southwestern Michigan at sites where and invasive plant, Vinca minor, has invaded was compared to a native site within the same forest and to the forest prior to invasion by the plant. Pitfall traps were used to sample cursorial spiders over the course of a summer. Vinca minor substantially altered the forest floor spider assemblage. The invasive plant reduced the total activity-abundance of spiders by nearly 49% and depressed species diversity and evenness; in contrast, species richness was not affected. We found that V. minor changed the guild and family structure with wolf spiders being common at sites where the plant had invaded. Vinca minor reduced the abundance of vagrant web building and crab spiders. Similarity indices revealed that the spider communities between the two sites were quite dissimilar (Bray-Curtis = 0.506; Jaccard’s = 0.520). Importantly, comparison to a study conducted in the same forest 28 years earlier showed that the cursorial spider assemblage in the forest prior to Vinca invasion was very different than it was after Vinca invaded but was similar to the current native site in species and guild composition. We conclude that invasion by Vinca has caused the striking changes we observed in community organization of this important group of forest floor predators. We suggest that changes in the physical structure of the litter/soil microhabitat with the invasion of V. minor are likely the cause of the substantial impacts of the plant on the spider assemblage.  相似文献   

13.
Summary We used physiological recordings, intracellular dye injections and immunocytochemistry to further identify and characterize neurons in the buccal ganglia of Aplysia calif ornica expressing Small Cardioactive Peptide-like immunoreactivity (SCP-LI). Neurons were identified based upon soma size and position, input from premotor cells B4 and B5, axonal projections, muscle innervation patterns, and neuromuscular synaptic properties. SCP-LI was observed in several large ventral neurons including B6, B7, B9, B10, and B11, groups of s1 and s2 cluster cells, at least one cell located at a branch point of buccal nerve n2, and the previously characterized neurons B1, B2 and B15.B6, B7, B9, B10 and B11 are motoneurons to intrinsic muscles of the buccal mass, each displaying a unique innervation pattern and neuromuscular plasticity. Combined, these motoneurons innervate all major intrinsic buccal muscles (I1/I3, I2, I4, I5, I6). Correspondingly, SCP-LI processes were observed on all of these muscles. Innervation of multiple nonhomologous buccal muscles by individual motoneurons having extremely plastic neuromuscular synapses, represents a unique form of neuromuscular organization which is prevalent in this system. Our results show numerous SCPergic buccal motoneurons with widespread ganglionic processes and buccal muscle innervation, and support extensive use of SCPs in the control of feeding musculature.Abbreviations SCP-LI small cardioactive peptide-like immunoreactivity - PSC postsynaptic current - EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential - FI facilitation index - TMR time to maximal response  相似文献   

14.
Analysis of neuromuscular junction morphology can give important insight into the physiological status of a given motor neuron. Analysis of thin flat muscles can offer significant advantage over traditionally used thicker muscles, such as those from the hind limb (e.g. gastrocnemius). Thin muscles allow for comprehensive overview of the entire innervation pattern for a given muscle, which in turn permits identification of selectively vulnerable pools of motor neurons. These muscles also allow analysis of parameters such as motor unit size, axonal branching, and terminal/nodal sprouting. A common obstacle in using such muscles is gaining the technical expertise to dissect them. In this video, we detail the protocol for dissecting the transversus abdominis (TVA) muscle from young mice and performing immunofluorescence to visualize axons and neuromuscular junctions (NMJs). We demonstrate that this technique gives a complete overview of the innervation pattern of the TVA muscle and can be used to investigate NMJ pathology in a mouse model of the childhood motor neuron disease, spinal muscular atrophy.  相似文献   

15.
Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to δ15 N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in δ15 N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in structuring communities than predation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The efficacy of predators of immature cotton fleahoppers,Pseudatomoscelis seriatus (Reuter), was calculated using field and laboratory cage confinement tests for consumption rate. The predators tested were the striped lynx spider,Oxyopes salticus Hentz; the black and white jumping spider,Phidippus audax (Hentz); the celer crab spider,Misumenops celer Hentz; and the red imported fire ant,Solenopsis invicta Buren. The spider predators were evaluated in a cotton field using predator-prey confinement cages on cotton plants. Average percent control (sensuAbbott 1925) of fleahoppers byO. salticus, P. audax, andM. celer were 42%, 66% and 32% respectively. The rate of fleahopper consumption by red imported fire ants was measured in the laboratory using various numbers of ants and fleahoppers. Daily percent control by ants ranged from 0.5% (single ant and fleahopper) to 100% (colony linked). The functional response of the 4 arthropod species to different prey numbers is illustrated and discussed as is the relative potential usefulness of natural enemies to suppress fleahoppers on cotton.   相似文献   

17.
The caudal photoreceptors (CPRs) of crayfish (Procambarus clarkii) can trigger walking and abdominal movements by their response to light.
1.  In a restrained, inverted crayfish, illumination of A6 evoked a CPR discharge followed by leg movements and bursting from the abdominal tonic flexor (TF) motoneurons. Intracellular electrical stimulation of a single CPR at high frequency (80 Hz) evoked similar responses.
2.  Responses only occurred when a single CPR axon was driven at 60 Hz or more and outlasted the stimulus.
3.  CPR stimulation also excites the pattern-initiating network (Moore and Larimer 1987) in the abdomen.
4.  The axon of the CPR projects from ganglion A6 to the brain. Terminal branches occur in the subesophageal ganglion and the brain. A small descending interneuron is dye-coupled to CPR in the subesophageal ganglion.
5.  In animals with cut circumesophageal connectives, the CPRs can evoke walking and the abdominal motor pattern.
6.  The relationship of the abdominal motor pattern to walking is altered by restraint and/or inversion. In freely moving crayfish, the cyclic abdominal motor pattern is only observed with backward walking. In restrained, inverted crayfish, the motor pattern occurs with both forward or backward walking.
  相似文献   

18.
The effects of the crab spider, Misumenops tricuspidatus (Fabricius), on the larval survival of three ladybird species, Harmonia axyridis Pallas, Coccinella septempunctata L., and Propylea japonica L., in relation to aphids were investigated in the laboratory. Predation by the spider on the three ladybird species differed. All the larvae of C. septempunctata, none of H. axyridis, and an intermediate number of P. japonica were attacked and eaten by the spider. All the larvae of H. axyridis suffered mortality due to cannibalism or starvation in the treatments with and without a spider. In case of C. septempunctata, however, mortality in the early instars was significantly greater in the treatment with a spider than without a spider and no larvae developed into pupae due to predation. In the treatment without a spider, the majority of the larvae in the former treatment suffered mortality due to cannibalism or starvation, and only 13.3% of larvae developed into the adult stage. In the case of P. japonica, mortality was mainly attributed to predation in the treatment with a spider and only 26.7% became adult. In comparison, 86.7% of larvae survived to the adult stage in the treatment without a spider. In addition, in both H. axyridis and C. septempunctata, the development of young larvae was significantly slower in the presence of a spider, but this was not the case with the older larvae of H. axyridis, which indicates that the effect of the spider on larval development changed with the developmental stage of the larvae in this species. However, the spider had no significant effect on the developmental time of P. japonica larvae. Although both the spider and the ladybirds significantly affected the number of aphids, they did not have an additive effect on aphid abundance. The interactions between the spider and the ladybirds, such as intraguild predation or competition, caused them to reduce aphid population density less than the ladybirds did on their own. The effect of the spider on the larval performance of three predatory ladybirds was found to be unequal in terms of their vulnerability to predation and rate of larval development and it depended on the species and developmental stage of the ladybird.  相似文献   

19.
Male silkworm moths, Bombyx mori, move their heads side-to-side during zigzag walking toward a source of sex pheromone. High-speed video analysis revealed that changes in walking direction were synchronized with this head turning. Thus the direction of the walking is indicated by the direction of the head turning. Head turning was regulated by neck motor neurons which innervate the cervical ventral muscles and the ventral muscles through the second cervical nerve. To determine the role of the `flipflop' state transition in spike activity carried by descending interneurons from the brain to the thoracic ganglion, we recorded pheromonal responses simultaneously from flipflop descending interneurons and a single cervical ventral 1 neck motor neuron. The activity of the cervical ventral 1 neck motor neuron was synchronized to that of the flipflop descending interneurons. The cervical ventral 1 neck motor neuron was morphologically identified using confocal imaging. Our results demonstrate that the flipflop signals play an important role in instructing turning signals during the pheromone-mediated behavior in a male B. mori. Accepted: 11 June 1998  相似文献   

20.
Blue crabs, Callinectes sapidus (Rathbun), are an ecologically and commercially important species along the East coast of North America. Over the past century and a half, blue crabs have been exposed to an expanding set of exotic species, a few of which are potential competitors. To test for interactions with invasive crabs, juvenile C. sapidus males were placed in competition experiments for a food item with two common non-indigenous crabs, the green crab Carcinus maenas (L.) and the Japanese shore crab, Hemigrapsus sanguineus (De Haan). Agonistic interactions were evaluated when they occurred. In addition, each species’ potential to resist predators was examined by testing carapace strength. Results showed that C. maenas was a superior competitor to both C. sapidus and H. sanguineus for obtaining food, while the latter two species were evenly matched against each other. Regarding agonism, C. sapidus, was the “loser” a disproportionate number of times. C. sapidus carapaces also had a significantly lower breaking strength. These experiments suggest that both as a competitor, and as potential prey, juvenile blue crabs have some disadvantages compared with these common sympatric exotic crab species, and in areas where these exotics are common, juvenile native blue crabs may be forced to expend more energy in conflict that could be spent foraging, and may be forced away from prime food items toward less optimum prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号