首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Under conditions of high antigenic load during infection with invasive lymphocytic choriomeningitis virus (LCMV) strains, virus can persist by selective clonal exhaustion of antigen-specific CD8(+) T cells. In this work we studied the down-regulation of the virus-specific CD8(+)-T-cell response during a persistent infection of adult mice, with particular emphasis on the contribution of the interferon response in promoting host defense. Studies were conducted by infecting mice deficient in receptors for type I (alpha/beta interferon [IFN-alpha/beta]), type II (IFN-gamma), and both type I and II IFNs with LCMV isolates that vary in their capacity to induce T-cell exhaustion. The main conclusions of this study are as follows. (i) IFNs play a critical role in LCMV infection by reducing viral loads in the initial stages of infection and thus modifying both the extent of CD8(+)-T-cell exhaustion and the course of infection. The importance of IFNs in this context varies with the biological properties of the LCMV strain. (ii) An inverse correlation exists between antigen persistence and responsiveness of virus-specific CD8(+) T cells. This results in distinct programs of activation or tolerance (functional unresponsiveness and/or physical elimination of antigen-specific cells) during acute and chronic virus infections, respectively. (iii) A successful immune response associated with definitive viral clearance requires an appropriate balance between cellular and humoral components of the immune system. We discuss the role of IFNs in influencing virus-specific T cells that determine the outcome of persistent infections.  相似文献   

3.
Unlike naive T cells, memory phenotype (CD44(high)) T cells exhibit a high background rate of turnover in vivo. Previous studies showed that the turnover of memory phenotype CD8(+) (but not CD4(+)) cells in vivo can be considerably enhanced by products of infectious agents such as LPS. Such stimulation is TCR independent and hinges on the release of type I IFNs (IFN-I) which leads to the production of an effector cytokine, probably IL-15. In this study, we describe a second pathway of CD44(high) CD8(+) stimulation in vivo. This pathway is IFN-gamma rather than IFN-I dependent and is mediated by at least three cytokines, IL-12, IL-18, and IFN-gamma. As for IFN-I, these three cytokines are nonstimulatory for purified T cells and under in vivo conditions probably act via production of IL-15.  相似文献   

4.
Th1 and Th17 T cells are often colocalized in pathological environments, yet Th1-derived IFN-gamma inhibits Th17 cell development in vitro. We explored the physiologic basis of this paradox in humans. In this study, we demonstrate increased the number of CD4(+) and CD8(+) IL-17(+) T cells in skin lesions of psoriasis. Furthermore, we show that myeloid APCs potently support induction of IL-17(+) T cells, and that this activity is greatly increased in psoriasis. We tested stimuli that might account for this activity. Th1 cells and IFN-gamma are increased in psoriatic blood and lesional skin. We show that IFN-gamma programs myeloid APCs to induce human IL-17(+) T cells via IL-1 and IL-23. IFN-gamma also stimulates APC production of CCL20, supporting migration of IL-17(+) T cells, and synergizes with IL-17 in the production of human beta-defensin 2, an antimicrobial and chemotactic protein highly overexpressed by psoriatic keratinocytes. This study reveals a novel mechanistic interaction between Th1 and IL-17(+) T cells, challenges the view that Th1 cells suppress Th17 development through IFN-gamma, and suggests that Th1 and IL-17(+) T cells may collaboratively contribute to human autoimmune diseases.  相似文献   

5.
6.
Differential regulation of human blood dendritic cell subsets by IFNs   总被引:29,自引:0,他引:29  
Based on the relative expression of CD11c and CD1a, we previously identified subsets of dendritic cells (DCs) or DC precursors in human peripheral blood. A CD1a(+)/CD11c(+) population (CD11c(+) DCs), also called myeloid DCs, is an immediate precursor of Langerhans cells, whereas a CD1a(-)/CD11c(-) population (CD11c(-) DCs), sometimes called lymphoid DCs but better known as plasmacytoid DCs, is composed of type I IFN (IFN-alpha beta)-producing cells. Here, we investigate the effects of IFN-alpha beta and IFN-gamma as well as other cytokines on CD11c(+) and CD11c(-) DC subsets, directly isolated from the peripheral blood, instead of in vitro-generated DCs. IFN-gamma and IFN-alpha, rather than GM-CSF, were the most potent cytokines for enhancing the maturation of CD11c(+) DCs. Incubation of CD11c(+) DCs with IFN-gamma also resulted in increased IL-12 production, and this IL-12 allowed DCs to increase Th1 responses by alloreactive T cells. In contrast, IFN-alpha did not induce IL-12 but, rather, augmented IL-10 production. IFN-alpha-primed matured CD11c(+) DCs induced IL-10-producing regulatory T cells; however, this process was independent of the DC-derived IL-10. On the other hand, IFN-alpha by itself neither matured CD11c(-) DCs nor altered the polarization of responding T cells, although this cytokine was a potent survival factor for CD11c(-) DCs. Unlike IFN-alpha, IL-3 was a potent survival factor and induced the maturation of CD11c(-) DCs. The IL-3-primed CD11c(-) DCs activated T cells to produce IL-10, IFN-gamma, and IL-4. Thus, CD11c(+) and CD11c(-) DC subsets play distinct roles in the cytokine network, especially their responses to IFNs.  相似文献   

7.
Previous studies have demonstrated that, as naive murine CD4(+) cells differentiate into Th1 cells, they lose expression of the second chain of IFN-gammaR (IFN-gammaR2). Hence, the IFN-gamma-producing subset of Th cells is unresponsive to IFN-gamma. Analysis of IFN-gamma-producing CD8(+) T cells demonstrates that, like Th1 cells, these cells do not express IFN-gammaR2. To define the importance of IFN-gamma signaling for the development of functional CD8(+) T cells, mice either lacking IFN-gammaR2 or overexpressing this protein were examined. While CD8(+) T cell development and function appear normal in IFN-gammaR2(-/-) mice, CD8(+) T cell function in IFN-gammaR2 transgenic is altered. IFN-gammaR2 transgenic CD8(+) T cells are unable to lyse target cells in vitro. However, these cells produce Fas ligand, perforin, and granzyme B, the effector molecules required for killing. Interestingly, TG CD8(+) T cells proliferate normally and produce cytokines, such as IFN-gamma in response to antigenic stimulation. Therefore, although IFN-gamma signaling is not required for the generation of normal cytotoxic T cells, constitutive IFN-gamma signaling can selectively impair the cytotoxic function of CD8(+) T cells.  相似文献   

8.
Patients with acute coronary syndromes experience circulatory and intraplaque expansion of an aggressive and unusual CD4(+) lymphocyte subpopulation lacking the CD28 receptor. These CD4(+)CD28(-) cells produce IFN-gamma and perforin, and are thought to play an important role in coronary atheromatous plaque destabilization. Aberrant expression of killer Ig-like receptors (KIRs) in CD4(+)CD28(-) cells is broadly thought to be responsible for their cytotoxicity, but the mechanisms involved remain poorly defined. We therefore sought to investigate the mechanism and regulation of CD4(+)CD28(-) cell functionality using T cell clones (n = 536) established from patients with coronary artery disease (n = 12) and healthy volunteers (n = 3). Our functional studies demonstrated that KIR2DS2 specifically interacted with MHC class I-presenting human heat shock protein 60 (hHSP60) inducing cytotoxicity. Further investigations revealed the novel finding that hHSP60 stimulation of TCR alone could not induce a cytotoxic response, and that this response was specific and KIR dependent. Analysis of CD4(+)CD28(-)2DS2(+) clones (n = 162) showed that not all were hHSP60 cytotoxic; albeit, their prevalence correlated with coronary disease status (p = 0.017). A higher proportion of clones responded to hHSP60 by IFN-gamma compared with perforin (p = 0.008). In this study, for the first time, we define the differential regulatory pathways involved in CD4(+)CD28(-) cell proinflammatory and effector responses. We describe in this study that, contrary to previous reports, CD4(+)CD28(-) cell recognition and killing can be specific and discriminate. These results, in addition to contributing to the understanding of CD4(+)CD28(-) cell functionality, may have implications for the monitoring and management of coronary artery disease progression.  相似文献   

9.
10.
11.
IFN-gamma plays a critical role in the CD8(+) T cell response to infection, but when and if this cytokine directly signals CD8(+) T cells during an immune response is unknown. We show that naive Ag-specific CD8(+) T cells receive IFN-gamma signals within 12 h after in vivo infection with Listeria monocytogenes and then become unresponsive to IFN-gamma throughout the ensuing Ag-driven expansion phase. Ag-specific CD8(+) T cells regain partial IFN-gamma responsiveness throughout the contraction phase, whereas the memory pool exhibits uniform, but reduced, responsiveness that is also modulated during the secondary response. The responsiveness of Ag-specific CD8(+) T cells to IFN-gamma correlated with modulation in the expression of IFN-gammaR2, but not with IFN-gammaR1 or suppressor of cytokine signaling-1. This dynamic regulation suggests that early IFN-gamma signals participate in regulation of the primary CD8(+) T cell response program, but that evading or minimizing IFN-gamma signals during expansion and the memory phase may contribute to appropriate regulation of the CD8(+) T cell response.  相似文献   

12.
The inducible costimulatory (ICOS) molecule is expressed by activated T cells and has homology to CD28 and CD152. ICOS binds B7h, a molecule expressed by APC with homology to CD80 and CD86. To investigate regulation of ICOS expression and its role in Th responses we developed anti-mouse ICOS mAbs and ICOS-Ig fusion protein. Little ICOS is expressed by freshly isolated mouse T cells, but ICOS is rapidly up-regulated on most CD4(+) and CD8(+) T cells following stimulation of the TCR. Strikingly, ICOS up-regulation is significantly reduced in the absence of CD80 and CD86 and can be restored by CD28 stimulation, suggesting that CD28-CD80/CD86 interactions may optimize ICOS expression. Interestingly, TCR-transgenic T cells differentiated into Th2 expressed significantly more ICOS than cells differentiated into Th1. We used two methods to investigate the role of ICOS in activation of CD4(+) T cells. First, CD4(+) cells were stimulated with beads coated with anti-CD3 and either B7h-Ig fusion protein or control Ig fusion protein. ICOS stimulation enhanced proliferation of CD4(+) cells and production of IFN-gamma, IL-4, and IL-10, but not IL-2. Second, TCR-transgenic CD4(+) T cells were stimulated with peptide and APC in the presence of ICOS-Ig or control Ig. When the ICOS:B7h interaction was blocked by ICOS-Ig, CD4(+) T cells produced more IFN-gamma and less IL-4 and IL-10 than CD4(+) cells differentiated with control Ig. These results demonstrate that ICOS stimulation is important in T cell activation and that ICOS may have a particularly important role in development of Th2 cells.  相似文献   

13.
TGF-beta1 plays a critical role in restraining pathogenic Th1 autoimmune responses in vivo, but the mechanisms that mediate TGF-beta1's suppressive effects on CD4(+) T cell expression of IFN-gamma expression remain incompletely understood. To evaluate mechanisms by which TGF-beta1 inhibits IFN-gamma expression in CD4(+) T cells, we primed naive wild-type murine BALB/c CD4(+) T cells in vitro under Th1 development conditions in the presence or the absence of added TGF-beta1. We found that the presence of TGF-beta1 during priming of CD4(+) T cells suppressed both IFN-gamma expression during priming as well as the development of Th1 effector cells expressing IFN-gamma at a recall stimulation. TGF-beta1 inhibited the development of IFN-gamma-expressing cells in a dose-dependent fashion and in the absence of APC, indicating that TGF-beta1 can inhibit Th1 development by acting directly on the CD4(+) T cell. During priming, TGF-beta1 strongly inhibited the expression of both T-bet (T box expressed in T cells) and Stat4. We evaluated the importance of these two molecules in the suppression of IFN-gamma expression at the two phases of Th1 responses. Enforced expression of T-bet by retrovirus prevented TGF-beta1's inhibition of Th1 development, but did not prevent TGF-beta1's inhibition of IFN-gamma expression at priming. Conversely, enforced expression of Stat4 partly prevented TGF-beta1's inhibition of IFN-gamma expression during priming, but did not prevent TGF-beta1's inhibition of Th1 development. These data show that TGF-beta1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4(+) T cells at priming and at recall.  相似文献   

14.
We recently demonstrated that CD8(+) T cells could block herpes simplex virus type 1 (HSV-1) reactivation from latency in ex vivo trigeminal ganglion (TG) cultures without destroying the infected neurons. Here we establish that CD8(+) T-cell prevention of HSV-1 reactivation from latency is mediated at least in part by gamma interferon (IFN-gamma). We demonstrate that IFN-gamma was produced in ex vivo cultures of dissociated latently infected TG by CD8(+) T cells that were present in the TG at the time of excision. Depletion of CD8(+) T cells or neutralization of IFN-gamma significantly enhanced the rate of HSV-1 reactivation from latency in TG cultures. When TG cultures were treated with acyclovir for 4 days to insure uniform latency, supplementation with recombinant IFN-gamma blocked HSV-1 reactivation in 80% of cultures when endogenous CD8(+) T cells were present and significantly reduced and delayed HSV-1 reactivation when CD8(+) T cells or CD45(+) cells were depleted from the TG cultures. The effectiveness of recombinant IFN-gamma in blocking HSV-1 reactivation was lost when its addition to TG cultures was delayed by more than 24 h after acyclovir removal. We propose that when the intrinsic ability of neurons to inhibit HSV-1 gene expression is compromised, HSV-specific CD8(+) T cells are rapidly mobilized to produce IFN-gamma and perhaps other antiviral cytokines that block the viral replication cycle and maintain the viral genome in a latent state.  相似文献   

15.
CXCR3, known to have four ligands (IFN-gamma inducible protein 10 (gamma IP-10), monokine induced by IFN-gamma (Mig), I-TAC, and 6Ckine), is predominantly expressed on memory/activated T lymphocytes. We recently reported that GM-CSF induces CXCR3 expression on CD34(+) hemopoietic progenitors, in which gamma IP-10 and Mig induce chemotaxis and adhesion. Here we further report that stimulation with GM-CSF causes phosphorylation of Syk protein kinase, but neither Casitas B-lineage lymphoma (Cbl) nor Cbl-b in CD34(+) hemopoietic progenitors can be blocked by anti-CD116 mAb. Specific Syk blocking generated by PNA antisense completely inhibits GM-CSF-induced CXCR3 expression in CD34(+) progenitors at both mRNA and protein as well as at functional levels (chemotaxis and adhesion). Cbl and Cbl-b blocking have no such effects. Thus, GM-CSF binds to its receptor CD116, and consequently activates Syk phosphorylation, which leads to induce CXCR3 expression. gamma IP-10 and Mig can induce Syk, Cbl, and Cbl-b phosphorylation in CD34(+) progenitors by means of CXCR3. gamma IP-10 or Mig has induced neither chemotaxis nor adhesion in GM-CSF-stimulated Cbl-b-blocked CD34(+) hemopoietic progenitors, whereas SDF-1alpha induces both chemotaxis and adhesion in these cells. Interestingly, gamma IP-10 and Mig can induce chemotaxis and adhesion in GM-CSF-stimulated Syk- or Cbl-blocked CD34(+) hemopoietic progenitors. Thus, Cbl-b, but not Syk and Cbl phosphorylation, is essential for gamma IP-10- and Mig-induced chemotaxis and adhesion in CD34(+) hemopoietic progenitors. This study provides a useful insight into novel signaling transduction pathways of the functions of CXCR3/gamma IP-10 and Mig, which may be especially important in the cytokine/chemokine environment for mobilization, homing, and recruitment during proliferation, differentiation, and maturation of hemopoietic progenitor cells.  相似文献   

16.
To determine the mechanisms of graft-versus-tumor (GVT) activity in the absence of graft-versus-host disease (GVHD) against a solid tumor, we established two allogeneic bone marrow transplantation models with a murine renal cell carcinoma (RENCA). The addition of 0.3 x 10(6) donor CD8(+) T cells to the allograft increased the survival of tumor-bearing mice without causing GVHD. The analysis of CD8(+) T cells deficient in cytotoxic molecules demonstrated that anti-RENCA activity is dependent on IFN-gamma and Fas ligand (FasL), but does not require soluble or membrane-bound TNF-alpha, perforin, or TRAIL. Recipients of IFN-gamma(-/-) CD8(+) T cells are unable to reject RENCA compared with recipients of wild-type CD8(+) T cells and, importantly, neither group develops severe GVHD. IFN-gamma(-/-) CD8(+) T cells derived from transplanted mice are less able to kill RENCA cells in vitro, while pretreatment of RENCA cells with IFN-gamma enhances class I and FasL expression and rescues the lytic capacity of IFN-gamma(-/-) CD8(+) T cells. These results demonstrate that the addition of low numbers of selected donor CD8(+) T cells to the allograft can mediate GVT activity without lethal GVHD against murine renal cell carcinoma, and this GVT activity is dependent on IFN-gamma and FasL.  相似文献   

17.
Two coxsackievirus B3 (CVB3) variants (H3 and H310A1) differ by a single amino acid mutation in the VP2 capsid protein. H3 induces severe myocarditis in BALB/c mice, but H310A1 is amyocarditic. Infection with H3, but not H310A1, preferentially activates Vgamma4 Vdelta4 cells, which are strongly positive for gamma interferon (IFN-gamma), whereas Vgamma1 Vdelta4 cells are increased in both H3 and H310A1 virus-infected animals. Depletion of Vgamma1(+) cells using monoclonal anti-Vgamma1 antibody enhanced myocarditis and CD4(+)-, IFN-gamma(+)-cell responses in both H3- and H310A1-infected mice yet decreased the CD4(+)-, IL-4(+)-cell response. Depleting Vgamma4(+) cells suppressed myocarditis and reduced CD4(+) IFN-gamma(+) cells but increased CD4(+) IL-4(+) T cells. The role of cytokine production by Vgamma1(+) and Vgamma4(+) T cells was investigated by adoptively transferring these cells isolated from H3-infected BALB/c Stat4 knockout (Stat4ko) (defective in IFN-gamma expression) or BALB/c Stat6ko (defective in IL-4 expression) mice into H3 virus-infected wild-type BALB/c recipients. Vgamma4 and Vgamma1(+) T cells from Stat4ko mice expressed IL-4 but no or minimal IFN-gamma, whereas these cell populations derived from Stat6ko mice expressed IFN-gamma but no IL-4. Stat4ko Vgamma1(+) cells (IL-4(+)) suppress myocarditis. Stat6ko Vgamma1(+) cells (IFN-gamma(+)) were not inhibitory. Stat6ko Vgamma4(+) cells (IFN-gamma(+)) significantly enhanced myocarditis. Stat4ko Vgamma4(+) cells (IL-4(+)) neither inhibited nor enhanced disease. These results show that distinct gammadelta-T-cell subsets control myocarditis susceptibility and bias the CD4(+)-Th-cell response. The cytokines produced by the Vgamma subpopulation have a significant influence on the CD4(+)-Th-cell phenotype.  相似文献   

18.
Proinflammatory molecules, including IFN-gamma and IL-12, play a crucial role in the elimination of causative agents. To allow healing, potent anti-inflammatory processes are required to down-regulate the inflammatory response. In this study, we first show that CD47/integrin-associated protein, a ubiquitous multispan transmembrane protein highly expressed on T cells, interacts with signal-regulator protein (SIRP)-alpha, an immunoreceptor tyrosine-based inhibition motif-containing molecule selectively expressed on myelomonocytic cells, and next demonstrate that this pair of molecules negatively regulates human T and dendritic cell (DC) function. CD47 ligation by CD47 mAb or L-SIRP-alpha transfectants inhibits IL-12R expression and down-regulates IL-12 responsiveness of activated CD4(+) and CD8(+) adult T cells without affecting their response to IL-2. Human CD47-Fc fusion protein binds SIRP-alpha expressed on immature DC and mature DC. SIRP-alpha engagement by CD47-Fc prevents the phenotypic and functional maturation of immature DC and still inhibits cytokine production by mature DC. Finally, in allogeneic MLR between mDC and naive T cells, CD47-Fc decreases IFN-gamma production after priming and impairs the development of a Th1 response. Therefore, CD47 on T cells and its cognate receptor SIRP-alpha on DC define a novel regulatory pathway that may be involved in the maintenance of homeostasis by preventing the escalation of the inflammatory immune response.  相似文献   

19.
An efficent antitumor and antiviral cellular immune response requires optimal interferon-gamma (IFN-gamma) secretion and perforin expression in CD8(+) T cells. The aim of this study was to define whether CD4(+) and CD8(+) T cells from patients with undifferentiated carcinoma of nasopharyngeal type (UCNT), a tumor regularly associated with the Epstein-Barr virus (EBV), have abnormal phenotype profiles, cytokine production, perforin and CD3-zeta expressions. Our data showed that CD4 and CD8 subset distribution was not grossly altered in the peripheral blood of UCNT patients, while tumor biopsies contained an increased proportion of CD8(+) T cells. The analysis of the CD4(+) subset showed a defect in interleukin-2 (IL-2) production and a moderate increase of IL-10 production, a situation consistent with a Th1/Th2 imbalance. We have also demonstrated that CD8(+) lymphocytes from UCNT patients had a marked impairment of IFN-gamma secretion and perforin expression. This impairment was not related to the presence of detectable EBV DNA in the plasma. In UCNT patients, the blockade of the perforin pathway and of IFN-gamma production may constitute important mechanisms for immune escape by the tumor and for impaired control of EBV replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号