首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the effect of ionophores on Cl- distribution in human erythrocyte suspensions, we measured the membrane potential by using 19F and 31P NMR methods. Incubation of human erythrocytes with 0.005 mM of the neutral ionophores valinomycin and nonactin resulted in membrane potentials of -21.2 and -17.8 mV in the presence and absence of DIDS. However, 0.020 mM of the carboxylic ionophores lasalocid, monensin, and nigericin yielded membrane potentials similar to those measured in the absence of ionophore (-9.4 mV). In methanol, the 35Cl- NMR linewidth in the presence of valinomycin was twice as broad as those observed in the presence of carboxylic ionophores, suggesting that neutral ionophores induce Cl- efflux in part via ion pairing.  相似文献   

2.
The transport kinetics of three lanthanide ions (viz., Pr3+, Nd3+, and Eu3+) across dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine unilamellar vesicles mediated by the two carboxylic ionophores lasalocid A and A23187 have been studied by proton nuclear magnetic resonance spectroscopy. Time-dependent changes in the chemical shifts of head group choline signals have been measured to calculate apparent rate constants of transport. These experiments have been done at different ionophore concentrations to determine the stoichiometry of the transporting species. The rates of transport have been found to be faster in the absence of intravesicular La3+ compared to those observed in its presence. The stoichiometry of the transporting species has been found to be 2:1 (ionophore:cation) for both lasalocid A and A23187 in dimyristoylphosphatidylcholine vesicles. However, stoichiometries of greater than 2 have been obtained for lasalocid A mediated lanthanide ion transport across dipalmitoylphosphatidylcholine vesicles. Possible reasons for the observations of such noninteger stoichiometries are discussed. Our results also indicated that A23187 is a more efficient carrier ionophore than lasalocid A.  相似文献   

3.
A continuation of the study of phospholipid bilayer vesicles as model membrane systems by laser-induced europium(III) luminescence spectroscopy is presented here (B.M. Cader and W. DeW. Horrocks, Jr, Biophys. Chem. 32 (1988) 97). This spectroscopic technique was used to characterize further the physical properties of small and large vesicles composed of dipalmitoylphosphatidylcholine and egg phosphatidylcholine, respectively. Unilamellar preparations were confirmed and internal aqueous volumes were calculated. The calcium-binding carboxylic ionophores, lasalocid A and A23187, were incorporated into the lipid bilayers of these vesicles for the purpose of modeling the mobile carrier mechanism of ion transport across cell membranes. Spectroscopic data implicate the presence of 1:1 and 1:2 europium(III)/lasalocid A complexes within the hydrophobic region, both capable of efficient transport and containing no water molecules in the inner sphere of europium(III). First-order rate constants for lasalocid A-mediated europium(III) transport were determined at 37 and 62 degrees C (0.018 and 0.11 min-1, respectively) using EGTA as a 'flag' to bind and detect the post-transported metal ion.  相似文献   

4.
Summary Effects of Ca2+ ionophores, A23187 and lasalocid, on superoxide anion generation by chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine methyl ester, in rabbit peritoneal exudate neutrophils were studied. The ionophores by themselves did not activate superoxide anion generation in these neutrophils. When preincubated with the cells for 2 min, both the ionophores inhibited superoxide generation induced by chemotactic peptide. The inhibition was present even in the absence of extracellular Ca2+ and the inhibition was better then. Lasalocid produces a dose-dependent chlortetracycline fluorescence decrease response in neutrophils loaded with chlortetracycline. This response is independent of extracellular Ca2+ concentration and is related to release of Ca2+ from intracellular storage sites. The dose-range at which lasalocid gives this response is same as the dose-range at which it causes inhibition of superoxide response. It may be concluded that the inhibition of superoxide generation by these ionophores is correlated to intracellular Ca2+ modulation.Abbreviations FMLP Formyl-Methionyl-Leucyl-Phenylalanine methyl ester  相似文献   

5.
We have utilized ionophores to test whether stimulation of chondrocyte prostaglandin biosynthesis is accompanied by an increase in cyclic nucleotide levels in these cells. Radioimmunoassay of prostaglandin E2, 6-oxo-prostaglandin F1 alpha (the stable metabolite of prostaglandin I2) and prostaglandin F2 alpha showed that synthesis of each was stimulated by the divalent-cation ionophore, A23187 after short-term incubation (1-7 min) in serum-free medium. No stimulation of thromboxane B2 was detected. Two monovalent ionophores, lasalocid and monensin failed to stimulate prostaglandin biosynthesis after short-term incubation. Ionophore A23187-stimulated prostaglandin biosynthesis was variably and partially inhibited by sodium meclofenamate, indomethacin and aspirin, but not by sodium salicylate. Ionophore A23187-stimulated prostaglandin biosynthesis was accompanied by a 7.5-fold increase in cyclic AMP levels after 15 min. Sodium meclofenamate, indomethacin and aspirin which inhibited prostaglandin E2 biosynthesis also reduced cyclic AMP levels. Exogenous prostaglandin E2 (1 microgram/ml) stimulated cyclic AMP biosynthesis, which was not inhibited by aspirin. These results indicated that prostaglandins can be considered as one of the local effectors controlling cyclic AMP production in articular cartilage.  相似文献   

6.
Ion transport across phospholipid vesicles was studied by 7Li and 23Na-NMR using an aqueous anionic paramagnetic shift reagent, dysprosium nitrilotriacetate [Dy(NTA)2]3−, mediated by ionophores, lasalocid A and A23187. The intra- and extracellular 7Li and 23Na-NMR signals were well separated (20 Hz) at mM concentration of the shift reagent. The observed data on the rate constant for lithium transport across DPPC vesicles at various concentrations of the ionophores indicated that lasalocid A is a more efficient carrier for lithium ion compared with the sodium ion transport by this ionophore, while A23187 was not specific to either of the ions (Li or Na). ©1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The membrane disruption mechanism of pandinin 1 (pin1), an antimicrobial peptide isolated from the venom of the African scorpion, was studied using 31P, 13C, 1H solid-state and multidimensional solution-state NMR spectroscopy. A high-resolution NMR solution structure of pin1 showed that the two distinct alpha-helical regions move around the central hinge region, which contains Pro19. 31P NMR spectra of lipid membrane in the presence of pin1, at various temperatures, showed that pin1 induces various lipid phase behaviors depending on the acyl chain length and charge of phospholipids. Notably, it was found that pin1 induced formation of the cubic phase in shorter lipid membranes above Tm. Further, the 13C NMR spectra of pin1 labeled at Leu28 under magic angle spinning (MAS) indicated that the motion of pin1 bound to the lipid bilayer was very slow, with a correlation time of the order of 10(-3) s. 31P NMR spectra of dispersions of four saturated phosphatidyl-cholines in the presence of three types of pin1 derivatives, [W4A, W6A, W15A]-pin1, pin1(1-18), and pin1(20-44), at various temperatures demonstrated that all three pin1 derivatives have a reduced ability to trigger the cubic phase. 13C chemical shift values for pin1(1-18) labeled at Val3, Ala10, or Ala11 under static or slow MAS conditions indicate that pin1(1-18) rapidly rotates around the average helical axis, and the helical rods are inclined at approximately 30 degrees to the lipid long axis. 13C chemical shift values for pin1(20-44) labeled at Gly25, Leu28, or Ala31 under static conditions indicate that pin1(20-44) may be isotropically tumbling. 1H MAS chemical shift measurements suggest that pin1 is located at the membrane-water interface approximately parallel to the bilayer surface. Solid-state NMR results correlated well with the observed biological activity of pin1 in red blood cells and bacteria.  相似文献   

8.
The antibiotics X 537A and A 23187 are negatively charged divalent cation ionophores. X 537A may, in addition, be an ionophore for amines including catecholamines. The effects of these ionophores were examined on the uptake and release of dopamine by synaptosomes prepared from rat corpus striatum. Both X 537A and A 23187, at concentrations less than 0.5 μM, release both endogenous and [3H]-dopamine from synaptosomes. They had virtually no effect on the uptake of exogenous dopamine. These compounds act by different mechanisms. X 537A causes divalent ion-independent release in which a large fraction of the effluent consists of deaminated products. X 537A, in addition, releases [3H]dopamine from rat adrenal medullary chromaffin granules. The results suggest that X 537A causes release of dopamine from intrasynaptosomal storage vesicles and perhaps is acting as a catecholamine carrier across the vesicular membrane. A 23187, on the other hand, causes a Ca2+-dependent release in which only a small fraction of the catechol in the effluent is deaminated. A 23187 has little effect on the release of [3H]dopamine from chromaffin granules. These results suggest that A 23187 carries Ca2+ into the synaptosomes and thereby initiates exocytotic release.  相似文献   

9.
Platelet activation is linked to an increase in the cytoplasmic Ca2+ concentration and consequently can also be induced by ionophores which mobilize Ca2+ from intracellular storage sites or transport it through the plasma membrane. The ionophores mostly used in studies on platelet activation are A 23187 and lasalocid (X-537A). The effects of eight compounds with known Ca2+-ionophoric activity in synthetic or natural membrane systems were studied in order to investigate the relationship between transport of Ca2+ and activation of platelets.Ionomycin acts as a true Ca2+ ionophore: it elicits rapid shape change, aggregation, the release reaction (secretion) and clot retraction (contraction). Beauvericin activates platelets too, but probably not by increasing the cytoplasmic Ca2+ concentration. Lysocellin does not activate platelets but induces a passive loss of serotonin. Virginiamycin S has no effect on platelets. Bromolasalocid and one epimer of dihydrolasalocid, like lasalocid, activate platelets by increasing the cytoplasmic Ca2+ concentration, and also induce a passive loss of serotonin. McN 4308 does not activate platelets but induces a slow uptake of 45Ca2+.  相似文献   

10.
Summary The antibiotic ionophores Br-X-537A and A-23187 alter the ultrastructure of neurohaemal tissue on the transverse nerve of the stick insect, Carausius morosus. Br-X-537A induces dramatic changes in the ultrastructural appearance of all three types of neurosecretory fibres present in the neurohaemal tissue. The neurosecretory granules become more electron-lucent and the mitochondria become more electron-opaque. The bounding membrane of the granules is frequently ruptured. A-23187, on the other hand, has no effect on two of the three types of fibres, but does produce an increase in the number of exocytotic profiles in the third.The two ionophores therefore have different effects on the same tissue. The results are discussed in the light of previous work with the use of these ionophores.We wish to thank Mrs. J. Birch for assistance with the electron micrographs, and Roche Products Ltd. and Lilly Research Centre Ltd. for gifts of the ionophores Br-X-537A and A-23187. The work was supported by the Science Research Council  相似文献   

11.
Phospholipid vesicles loaded with Quin-2 and 2'',7''-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) have been used to investigate the effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin. At an external pH of 7.0, a delta pH (inside basic) of 0.4-0.6 U decreases the rate of Ca2+ transport into the vesicles by severalfold under some conditions. The apparent extent of transport is also decreased. In contrast, raising the pH by 0.4-0.6 U in the absence of a delta pH increases both of these parameters, although by smaller factors. The relatively large effects of a delta pH on the transport properties of Ca2+ ionophores seem to reflect a partial equilibration of the transmembrane ionophore distribution with the H+ concentration gradient across the vesicle membrane. This unequal distribution of ionophore can cause a very slow or incomplete ionophore-dependent equilibration of delta pCa with delta pH. A second factor of less certain origin retards full equilibration of delta pCa when delta pH = 0. These findings call into question several ionophore-based methods that are used to investigate the regulatory activities of Ca2+ and other divalent cations in biological systems. Notable among these are the null-point titration method for determining the concentration of free cations within cells and the use of ionophores plus external cation buffers to calibrate intracellular cation indicators. The present findings also indicate that the transport mode of Ca2+ ionophores is more strictly electroneutral than was thought, based upon previous studies.  相似文献   

12.
The protein kinase C activators phorbol myristate acetate (PMA), mezerein, oleoylacetylglycerol, and (-)-indolactam V, although without direct effect on arachidonic acid release, greatly enhance the release of platelet arachidonic acid caused by the Ca2+ ionophores A23187 and ionomycin. In contrast, 4 alpha-phorbol 12,13-didecanoate and (+)-indolactam V, which lack the ability to activate kinase C, do not potentiate arachidonate release. Release of arachidonic acid occurs without activation of phospholipase C and is therefore mediated by phospholipase A2. Synergism between PMA and A23187 is not affected by inactivation of the Na+/H+ exchanger with dimethylamiloride. The time course and dose-response for the effect of PMA at 23 degrees C closely correlate with the phosphorylation of a set of relatively "slowly" phosphorylated proteins (P20, P35, P41, P60), but not the rapidly phosphorylated P47 protein. P20 is myosin light chain, and P41 is probably Gi alpha, but the other proteins have not been positively identified. Depletion of metabolic ATP stores by antimycin A plus 2-deoxyglucose abolishes both protein phorphorylation and the potentiation of arachidonate release by PMA, but does not prevent fatty acid release by the ionophores. Similarly, the kinase C inhibitors H-7 and staurosporine produce, respectively, partial and complete inhibition of PMA-potentiated arachidonic acid release and protein phosphorylation, without affecting the direct response to ionophores. These results indicate that protein phosphorylation, mediated by kinase C, promotes the phospholipase A2 dependent release of arachidonic acid in platelets when intracellular Ca2+ is elevated by Ca2+ ionophores.  相似文献   

13.
Horse eosinophils preincubated with 3H-labelled acetate and stimulated with the Ca2+ ionophores ionomycin or A23187 form a radioactive compound, which we have shown to be 1-O-alkyl-2-[3H]acetyl-sn-glycero-3-phosphocholine (platelet-activating factor). We could detect no 1-O-acyl-2-[3H]acetyl-glycero-3-phosphocholine in the radioactive fraction. The formation of platelet-activating factor was strongly correlated to the generation of leukotriene C4, the main arachidonate metabolite in horse eosinophils, suggesting that platelet-activating factor and leukotriene C4 have a common precursor pool (1-O-alkyl-2-arachidonyl-glycero-3-phosphocholine) and a common regulation of synthesis. Even though both ionomycin and A23187 are described as Ca2+ ionophores, they have a series of significantly different effects on the eosinophils with respect to formation of platelet-activating factor and leukotriene C4. While A23187 induces an asymptotic maximum of mediator formation at concentrations higher than 20 microM, ionomycin expressed a narrow optimum at 2 microM. The effects of exogenous pH on the release of mediators also differ strongly between the two ionophores: for A23187 the effects are the same for both mediators but when ionomycin is used as stimulant, generation of platelet-activating factor and leukotriene C4 are affected differently.  相似文献   

14.
The non-macrolid polyene antibiotic oleficin, which has been shown to function as an ionophore of Mg2+ in isolated rat liver mitochondria, preferentially inhibited growth of the yeast Saccharomyces cerevisiae on non-fermentable substrates. It uncoupled and inhibited respiration of intact cells and converted both growing and resting cells into respiration-deficient mutants. The mutants arose as a result of fragmentation of the mitochondrial genome. Another antibiotic known to be an ionophore of divalent cations, A23187, also selectively inhibited growth of the yeast on non-fermentable substrates, but did not produce the respiration-deficient mutants, neither antibiotic inhibited the energy-dependent uptake of divalent cations by yeast cells nor opened the plasma membrane for these cations. The results indicate that in Saccharomyces cerevisiae both oleficin and A23187 preferentially affected the mitochondrial membrane without acting as ionophores in the plasma membrane.  相似文献   

15.
A S Ulrich  M P Heyn  A Watts 《Biochemistry》1992,31(42):10390-10399
The orientation and conformation of retinal within bacteriorhodopsin of the purple membrane of Halobacterium halobium was established by solid-state deuterium NMR spectroscopy, through the determination of individual chemical bond vectors. The chromophore ([2,4,4,16,16,17,17,17,18,18-2H11]retinal) was specifically deuterium-labeled on the cyclohexene ring and incorporated into the protein. A uniaxially oriented sample of purple membrane patches was prepared and measured at a series of inclinations relative to the spectrometer field. 31P NMR was used to characterize the mosaic spread of the oriented sample, and computer simulations were applied in the analysis of the 2H NMR and 31P NMR spectral line shapes. From the deuterium quadrupole splittings, the specific orientations of the three labeled methyl groups on the cyclohexene ring could be calculated. The two adjacent methyl groups (on C1) of the retinal were found to lie approximately horizontal in the membrane and make respective angles of 94 degrees +/- 2 degrees and 75 degrees +/- 2 degrees with the membrane normal. The third group (on C5) points toward the cytoplasmic side with an angle of 46 degrees +/- 3 degrees. These intramolecular constraints indicate that the cyclohexene ring lies approximately perpendicular to the membrane surface and that it has a (6S)-trans conformation. From the estimated angle of the tilt of the chomophore long axis, it is concluded that the polyene chain is slightly curved downward to the extracellular side of the membrane.  相似文献   

16.
Summary The effects of divalent cation ionophores, A23187 and X-537A, on the electrical membrane properties were investigated by using the soma membrane of the X-organ of the crayfish. They reduced the amplitude and maximum rate of rise of Ca-action potential in lower concentration. As the concentration increased, a reduction of membrane resistance and hyperpolarization occurred simultaneously. Further increase resulted in membrane depolarization with a further decrease in resistance. The threshold concentration of X537A was 100 times higher than that of A23187. These effects were reversible only when the application period was relatively short, while a longer application resulted in an incomplete reversibility or in no reversibility at all. The ionophore effect was facilitated in high Ca medium and diminished in low Ca medium. In Sr medium, the same effects on the resistance and the membrane potential were barely observable. TEA reduced the effects of A23187 but did not completely inhibit the effects. The Na-action potential was also reduced by the higher concentration of the ionophore. From these results it is concluded that the divalent cation ionophores, A23187 and X537A, carry divalent cation, Ca ions in a physiological medium, into the neuron soma through the membrane and the consequent increase of the intracellular divalent cations induces K conductance increase and that higher concentration of the ionophore induces the increase in the conductance of the other ion species, such as Na.  相似文献   

17.
The effects of the ionophores A-23187 and X-537 A on glucose metabolism, ATP content and sucrose permeability in pancreatic islets microdissected from obese-hyperglycemic mice were studied. The formation of 14CO2 from 10 mM D-[U-14C] GLUCOSE WAS INHIBITED BY OMISSION OF Ca2+ from the medium. A-23187 (10 muM) induced a further decrease of 14CO2 formation whereas X-537 A (10 muM) had no effect. At 20 mM glucose both A-23187 (48 muM) and X-537 A (43 muM) decreased the 14CO2 formation in the absence of Ca2+ whereas only X-537 A inhibited in the presence of Ca2+. X-537 A (43 muM) also decreased the formation of 3H2O from 20 mM D-[5-3H] glucose. The islet content of ATP was not changed after incubation in media deficient in either Mg2+ or Ca2+. However, omission of both Mg2+ and Ca2+ resulted in about 50% decrease of the ATP content. A-23187 and X-537 A induced dose-dependent decreases of the islet ATP content. X-537 A was much more potent than A-23187. Both ionophores induced stronger depression of the ATP content when Ca2+ was omitted. X-537 A (43 muM) but not A-23187 (48 muM) increased the beta-cell membrane permeability as indicated by an increased sucrose space in relation to the urea space of islets. Such an effect was not obtained with X-537 A at 1 muM or by omission of Ca2+. It is suggested that the marked metabolic effects of the ionophores reflect an impaired mitochondrial metabolism. These metabolic changes should be considered in interpretations of ionophore action on insulin secretion.  相似文献   

18.
AIMS: To examine the effects of ionophores on Salmonella and Escherichia coli O157:H7 in pure and mixed ruminal fluid cultures. METHODS AND RESULTS: Four Salmonella serotypes (Dublin, Derby, Typhimurium, and Enteriditis) and two strains of E. coli O157:H7 (ATCC 43895 and FDIU 6058) were cultured in the presence of varying concentrations of ionophores (monensin, lasalocid, laidlomycin propionate, and bambermycin) in pure and mixed ruminal fluid cultures. Bacterial growth rates in pure culture were not affected (P > 0.10) by ionophores at concentrations up to 10 times the approximate rumen ionophore concentration under normal feeding regimens. Likewise, ionophores had no effect (P > 0.10) on Salmonella or E. coli CFU plated from 24-h ruminal fluid incubations. Ionophore treatment decreased (P < 0.01) the acetate : propionate ratio in ruminal fluid cultures as expected. CONCLUSIONS: Ionophores had no effect on the foodborne pathogens Salmonella and E. coli O157:H7 in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that ionophore feeding would have little or no effect on Salmonella or E. coli populations in the ruminant.  相似文献   

19.
Su Y  Waring AJ  Ruchala P  Hong M 《Biochemistry》2011,50(12):2072-2083
The structural basis for the gram selectivity of two disulfide-bonded β-hairpin antimicrobial peptides (AMPs) is investigated using solid-state nuclear magnetic resonance (NMR) spectroscopy. The hexa-arginine PG-1 exhibits potent activities against both gram-positive and gram-negative bacteria, while a mutant of PG-1 with only three cationic residues maintains gram-positive activity but is 30-fold less active against gram-negative bacteria. We determined the topological structure and lipid interactions of these two peptides in a lipopolysaccharide (LPS)-rich membrane that mimics the outer membrane of gram-negative bacteria and in the POPE/POPG membrane, which mimics the membrane of gram-positive bacteria. (31)P NMR line shapes indicate that both peptides cause less orientational disorder in the LPS-rich membrane than in the POPE/POPG membrane. (13)C chemical shifts and (13)C-(1)H dipolar couplings show that both peptides maintain their β-hairpin conformation in these membranes and are largely immobilized, but the mutant exhibits noticeable intermediate-time scale motion in the LPS membrane at physiological temperature, suggesting shallow insertion. Indeed, (1)H spin diffusion from lipid chains to the peptides shows that PG-1 fully inserts into the LPS-rich membrane whereas the mutant does not. The (13)C-(31)P distances between the most hydrophobically embedded Arg of PG-1 and the lipid (31)P are significantly longer in the LPS membrane than in the POPE/POPG membrane, indicating that PG-1 does not cause toroidal pore defects in the LPS membrane, in contrast to its behavior in the POPE/POPG membrane. Taken together, these data indicate that PG-1 causes transmembrane pores of the barrel-stave type in the LPS membrane, thus allowing further translocation of the peptide into the inner membrane of gram-negative bacteria to kill the cells. In comparison, the less cationic mutant cannot fully cross the LPS membrane because of weaker electrostatic attractions, thus causing weaker antimicrobial activities. Therefore, strong electrostatic attraction between the peptide and the membrane surface, ensured by having a sufficient number of Arg residues, is essential for potent antimicrobial activities against gram-negative bacteria. The data provide a rational basis for controlling gram selectivity of AMPs by adjusting the charge densities.  相似文献   

20.
The interaction of a tea catechin, epigallocatechin gallate (EGCg), with the model membrane of dimyristoylphosphatidylcholine (DMPC) was studied by solid-state (31)P and (2)H NMR. The (31)P chemical shift anisotropy of the DMPC phosphate group decreased on addition of EGCg. The (2)H NMR spectrum of [4-(2)H]EGCg, which is deuterated at the 4-position, in the DMPC liposomes gave deuterium nuclei with much smaller quadrupole splittings than those in the solid phase. These (31)P and (2)H NMR observations provide direct experimental evidence that the EGCg molecule interacts with the lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号