首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The purpose of the present study was to comprehensively examine oxygen consumption (VO(2)) kinetics during running and cycling through mathematical modeling of the breath-by-breath gas exchange responses to moderate and heavy exercise. After determination of the lactate threshold (LT) and maximal oxygen consumption (VO(2 max)) in both cycling and running exercise, seven subjects (age 26.6 +/- 5.1 yr) completed a series of "square-wave" rest-to-exercise transitions at running speeds and cycling power outputs that corresponded to 80% LT and 25, 50, and 75%Delta (Delta being the difference between LT and VO(2 max)). VO(2) responses were fit with either a two- (LT) exponential model. The parameters of the VO(2) kinetic response were similar between exercise modes, except for the VO(2) slow component, which was significantly (P < 0.05) greater for cycling than for running at 50 and 75%Delta (334 +/- 183 and 430 +/- 159 ml/min vs. 205 +/- 84 and 302 +/- 154 ml/min, respectively). We speculate that the differences between the modes are related to the higher intramuscular tension development in heavy cycle exercise and the higher eccentric exercise component in running. This may cause a relatively greater recruitment of the less efficient type II muscle fibers in cycling.  相似文献   

5.
Relationship between body and leg VO2 during maximal cycle ergometry.   总被引:3,自引:0,他引:3  
It is not known whether the asymptotic behavior of whole body O2 consumption (VO2) at maximal work rates (WR) is explained by similar behavior of VO2 in the exercising legs. To resolve this question, simultaneous measurements of body and leg VO2 were made at submaximal and maximal levels of effort breathing normoxic and hypoxic gases in seven trained male cyclists (maximal VO2, 64.7 +/- 2.7 ml O2.min-1.kg-1), each of whom demonstrated a reproducible VO2-WR asymptote during fatiguing incremental cycle ergometry. Left leg blood flow was measured by constant-infusion thermodilution, and total leg VO2 was calculated as the product of twice leg flow and radial arterial-femoral venous O2 concentration difference. The VO2-WR relationships determined at submaximal WR's were extrapolated to maximal WR as a basis for assessing the body and leg VO2 responses. The differences between measured and extrapolated maximal VO2 were 235 +/- 45 (body) and 203 +/- 70 (leg) ml O2/min (not significantly different). Plateauing of leg VO2 was associated with, and explained by, plateauing of both leg blood flow and O2 extraction and hence of leg VO2. We conclude that the asymptotic behavior of whole body VO2 at maximal WRs is a direct reflection of the VO2 profile at the exercising legs.  相似文献   

6.
The purpose of this study was to develop and evaluate an alternative method for determining the position of the anterior superior iliac spine (ASIS) during cycling. The approach used in this study employed an instrumented spatial linkage (ISL) system to determine the position of the ASIS in the parasagittal plane. A two-segment ISL constructed using aluminum segments, bearings, and digital encoders was tested statically against a calibration plate and dynamically against a video-based motion capture system. Four well-trained cyclists provided data at three pedaling rates. Statically, the ISL had a mean horizontal error of 0.03 +/- 0.21 mm and a mean vertical error of -0.13 +/- 0.59 mm. Compared with the video-based motion capture system, the agreement of the location of the ASIS had a mean error of 0.30 +/- 0.55 mm for the horizontal dimension and -0.27 +/- 0.60 mm for the vertical dimension. The ISL system is a cost-effective, accurate, and valid measure for two-dimensional kinematic data within a range of motion typical for cycling.  相似文献   

7.
Present study was undertaken to elucidate possible distortion of phase response and amplitude response of various respiratory parameter such as VO2, VCO2 and VE to sinusoidal work load by comparing model analysis with manual analysis. Also, an attempt was made to determine whether there is any relationship between the characteristics of response of these parameters and the aerobic capacity of subjects. Six healthy male subjects were performed exercise on an electrically braked bicycle ergometer for 32 min. The work load was varied sinusoidally between 30 watts and 60% VO2max being under anaerobic threshold with periods from 1 to 16 min. These parameters were determined in breath-by-breath mode with a computer system and mass spectrometer. In model analysis, amplitude and phase responses were well described by first order exponential model, and strong correlations were observed between magnitude of phase response or time constant of amplitude response and aerobic capacity. Manual analysis revealed that respiratory responses to sinusoidal work load are not completely sinusoidal but somewhat distorted forming saw-tooth waves with steeper downslopes.  相似文献   

8.
Using a model of spike generator mechanism (SGM) with a variable threshold we simulate the responses of utricular afferents to sinusoidal vibrations. It reproduces the phase locking characteristics (bifurcations diagrams) and the stimulus frequency firing rate relationships of different types of utricular afferents. We estimate the model parameters selecting the values which best fit the experimental results and we compare them with those from basic mechanisms involved in utricular codification.  相似文献   

9.
We describe a novel software system that utilizes automated algorithms to perform edge detection and wall tracking of high-resolution B-mode arterial ultrasound images, combined with synchronized Doppler waveform envelope analysis, to calculate conduit arterial blood flow (BF) across the cardiac cycle. Furthermore, we describe changes in brachial arterial BF to the resting forearm during incremental cycle ergometry in eight subjects. During exercise, peak BF during the cardiac cycle increased at each workload (P < 0.001), because of increased velocity in the presence of unaltered cross-sectional area. In contrast, mean BF calculated across each cardiac cycle decreased at lower workloads before increasing at 100 and 160 W (P < 0.001). Differences in the pattern of peak and mean cardiac cycle flows were due to the influence of retrograde diastolic flow, which had a larger impact on mean flows at lower workloads. In conclusion, BF can be measured with high temporal resolution across the cardiac cycle in humans. Resting brachial arterial flow, including retrograde flow, increases during lower limb exercise.  相似文献   

10.
Blood lactate in trained cyclists during cycle ergometry at critical power   总被引:2,自引:0,他引:2  
The purposes of this investigation were to determine the validity of critical power (CP) as a measure of the work rate that can be maintained for a very long time without fatigue and to determine whether this corresponded with the maximal lactate steady-state (lass,max). Eight highly trained endurance cyclists (maximal oxygen uptake 74.1 ml.kg-1.min-1, SD 5.3) completed four cycle ergometer tests to exhaustion at pre-determined work rates (360, 425, 480 and 520 W). From these four co-ordinates of work and time to fatigue the regression of work limit on time limit was calculated for each individual (CP). The cyclists were then asked to exercise at their CP for 30 min. If CP could not be maintained, the resistance was reduced minimally to allow the subject to complete the test and maintain a blood lactate plateau. Capillary blood was sampled at 0,5,10,20 and 30 min into exercise for the analysis of lactate. Six of the eight cyclists were unable to maintain CP for 30 min without fatigue. In these subjects, the mean power attained was 6.4% below that estimated by CP. Mean blood lactates (n = 8) reached a steady-state (8.9 mmol.l-1 SD 1.6) during the last 20 min of exercise indicating that CP slightly overestimated lass,max, Individual blood lactates during the last 20 min of exercise were more closely related to the gamma-intercept of the CP curve (r = 0.78, P less than 0.05) than either CP (0.34, NS) or mean power output (r = 0.42, NS).  相似文献   

11.
We assessed the effects of naloxone, an opioid antagonist, on exercise capacity in 13 men and 5 women (mean age = 30.1 yr, range = 21-35 yr) during a 25 W/min incremental cycle ergometer test to exhaustion on different days during familiarization trial and then after 30 mg (iv bolus) of naloxone or placebo (Pl) in a double-blind, crossover design. Minute ventilation (Ve), O(2) consumption (Vo(2)), CO(2) production, and heart rate (HR) were monitored. Perceived exertion rating (0-10 scale) and venous samples for lactate were obtained each minute. Lactate and ventilatory thresholds were derived from lactate and gas-exchange data. Blood pressure was obtained before exercise, 5 min postinfusion, at maximum exercise, and 5 min postexercise. There were no control-Pl differences. The naloxone trial demonstrated decreased exercise time (96% Pl; P < 0.01), total cumulative work (96% Pl; P < 0.002), peak Vo(2) (94% Pl; P < 0.02), and HR (96% Pl; P < 0.01). Other variables were unchanged. HR and Ve were the same at the final common workload, but perceived exertion was higher (8.1 +/- 0.5 vs. 7.1 +/- 0.5) after naloxone than Pl (P < 0.01). The threshold for effort perception amplification occurred at approximately 60 +/- 4% of Pl peak Vo(2). Thus we conclude that peak work capacity was limited by perceived exertion, which can be attenuated by endogenous opioids rather than by physiological limits.  相似文献   

12.
The purpose of this study was to compare the effects of warm-up protocols using either whole-body vibration (WBV) or cycle ergometry (CE) on peak torque at 3 different isokinetic speeds and on fatigue in the knee extension exercise. Twenty-seven recreationally trained (age = 23.59 ± 3.87 years) men (n = 14) and women (n = 13) were tested at 3 different isokinetic speeds (60, 180, 300°·s-1) after either WBV or CE warm-up. The WBV consisted of intermittent bouts of 30 seconds of isometric squats at various degrees of hip and knee flexion for a total of 5 minutes. The CE consisted of 5 minutes of pedaling a cycle ergometer at 65-85% of age-predicted max heart rate. Comparisons between the warm-up conditions were analyzed using repeated measures analysis of variance. For the fatigue comparison, subjects completed 50 continuous concentric knee extensions at 240°·s-1. Means from the first 3 repetitions were compared to means from the final 3 repetitions to establish a fatigue index. Conditions were compared through an independent T-test. No significant (p > 0.05) differences were discovered between warm-up conditions at any speed or on the fatigue index. Means were virtually identical at 60°·s-1 (WBV = 142.14 ± 43.61 ft lb-1; CE = 140.64 ± 42.72 ft lb-1), 180° s-1 (WBV = 93.88 ± 35.18 ft lb-1; CE = 96.36 ± 31.53 ft lb-1), and 300°·s-1 (WBV = 78.36 ± 26.04 ft lb-1; CE = 80.13 ± 26.08), and on fatigue percentage (WBV = 51.14 ± 10.06%; CE = 52.96 ± 9.19%). These data suggest that the more traditional 5-minute cycle ergometer warm-up elicits results comparable to a less common vibration warm-up. The findings of this study are that these modalities are comparable under the tested conditions.  相似文献   

13.
14.
This experiment was designed to estimate the optimum pedal rates at various power outputs on the cycle ergometer. Five trained bicycle racers performed five progressive maximal tests on the ergometer. Each rode at pedal rates of 40, 60, 80, 100, and 120 rev X min-1. Oxygen uptake and heart rate were determined from each test and plotted against pedal rate for power outputs of 100, 150, 200, 250, and 300 W. Both VO2 and heart rate differed significantly among pedal rates at equivalent power outputs, the variation following a parabolic curve. The low point in the curve was taken as the optimal pedal rate; i.e., the pedal rate which elicited the lowest heart rate or VO2 for a given power output. When the optimum was plotted against power output the variation was linear. These results indicate that an optimum pedal rate exists in this group of cyclists. This optimum pedal rate increases with power output, and when our study is compared to studies in which elite racers, or non-racers were used, the optimum seems to increase with the skill of the rider.  相似文献   

15.
Fatigue Profile, a new numerical method for characterising fatigue in isokinetic cycle ergometry is presented and compared with the conventional fatigue index (FI). The new method describes the temporal development of muscle fatigue based on the decline of peak power output throughout a whole trial. The advantage of this method is demonstrated by the analysis of two 25 s maximum trials, separated by 90 s recovery, performed by a well-trained athlete at a pedal frequency of 120 revolutions per minute. A fourth degree polynomial was fitted to model the peak power data. Using the polynomial model coefficients the first derivative represented the rate of changing peak power which represented the Fatigue Profile. The conventional FI was calculated as -35 Ws(-1) and -32 Ws(-1) for trials 1 and 2 respectively, indicating minor differences in fatigue between trials. In contrast the Fatigue Profile revealed important numeric and temporal differences between the trials. For trial 1 a maximum rate of peak power decline of -65 Ws(-1) was reached at approximately 6 s into the trial. In marked contrast, in trial 2, maximum rate of peak power decline (-146 Ws(-1)) occurred immediately. The Fatigue Profile approach allows the characterisation of the temporal development of fatigue under different experimental conditions and in combination with other techniques may yield further insight into the underlying mechanisms of fatigue.  相似文献   

16.
The purpose of the present study was to test the hypothesis that leg blood flow responses during submaximal cycle ergometry are reduced with age in healthy normally active men. Eleven younger (20-25 yr) and eight older (62-73 yr) normotensive, nonendurance-trained men performed both graded and constant-load bouts of leg cycling at the same absolute and relative [% of peak O(2) consumption (Vo(2 peak))] exercise intensities while leg blood flow (femoral vein thermodilution), mean arterial pressure (MAP; radial artery), cardiac output (acetylene rebreathing), blood O(2) content, and plasma catecholamines were measured. Leg blood flow responses at the same absolute submaximal power outputs (20-100 W) and at a fixed systemic O(2) demand (1.1 l/min) did not differ between groups (P = 0.14-0.19), despite lower absolute levels of cardiac output in the older men (P < 0.05). MAP at the same absolute power outputs was 8-12 mmHg higher (P < 0.05) in the older men, but calculated leg vascular conductance responses (leg blood flow/MAP) were identical in the two groups (P > 0.9). At the same relative intensity (60% Vo(2 peak)), leg norepinephrine spillover rates were approximately twofold higher in the older men (P = 0.38). Exercise-induced increases in leg arterial-venous O(2) difference were identical between groups (P > 0.9) because both arterial and venous O(2) contents were lower in the older vs. younger men. These results suggest that the ability to augment active limb blood flow and O(2) extraction during submaximal large muscle mass exercise is not impaired but is well preserved with age in healthy men who are normally active.  相似文献   

17.
The purpose of this investigation was to determine the relationships for mechanomyographic (MMG) amplitude, MMG mean power frequency (MPF), electromyographic (EMG) amplitude, and EMG MPF versus power output during incremental cycle ergometry. Seventeen adults volunteered to perform an incremental test to exhaustion on a cycle ergometer. The test began at 50 W and the power output was increased by 30 W every 2 min until the subject could no longer maintain 70 rev min(-1). The MMG and EMG signals were recorded simultaneously from the vastus lateralis during the final 10 s of each power output and analyzed. MMG amplitude, MMG MPF, EMG amplitude, EMG MPF, and power output were normalized as a percentage of the maximal value from the cycle ergometer test. Polynomial regression analyses indicated that MMG amplitude increased (P<0.05) linearly across power output, but there was no change (P>0.05) in MMG MPF. EMG amplitude and MPF were fit best (P<0.05) with quadratic models. These results demonstrated dissociations among the time and frequency domains of MMG and EMG signals, which may provide information about motor control strategies during incremental cycle ergometry. The patterns for amplitude and frequency of the MMG signal may be useful for examining the relationship between motor-unit recruitment and firing rate during dynamic tasks.  相似文献   

18.
AimPeople with complete lower-limb paralysis resulting from spinal cord injury (SCI) can perform cycle ergometry by means of functional electrical stimulation. Here, we propose and evaluate new exercise testing methods for estimation of cardiopulmonary performance parameters during this form of exercise.MethodsWe utilised a customised ergometer incorporating feedback control of stimulated exercise workrate and cycling cadence. This allowed the imposition of arbitrary workrate profiles with high precision with the potential for improved sensitivity in exercise testing. New incremental exercise test (IET) and step exercise test (SET) protocols for determination of peak and steady-state performance parameters were assessed.ResultsThe IET protocol allowed reliable determination of the ventilatory threshold, peak workrate and oxygen uptake-workrate relationship, but gave unrepresentative peak oxygen uptake values and highly variable measures of oxygen uptake kinetics. The SET protocol gave reliable estimation of steady-state oxygen uptake and metabolic efficiency of constant load exercise, but high variability in the estimation of oxygen uptake kinetics.ConclusionThe feedback-controlled testbed and the new IET and SET protocols have the potential for estimation of cardiopulmonary performance parameters with improved sensitivity during stimulated cycle ergometry in subjects with SCI.  相似文献   

19.
20.
Studies have been carried out on the use of octamer oligonucleotides tailed with different base analogues as primers in cycle sequencing reactions. 5-Nitroindole tails improved the performance as primers of a number of octamers. A tail length of three or four 5-nitroindole residues significantly increased the sequencing signal intensity for almost all primers. The use of incomplete libraries of tailed octamer primers for primer walking is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号