首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The normal sequence at which SV40 DNA replication terminates (TER) is unusual in that it promotes formation of catenated intertwines when two converging replication forks enter to complete replication (Weaver et al., 1985). Here we show that yeast centromeric sequences also exhibit this phenomenon. CEN3 caused accumulation of late replicating intermediates and catenated dimers in plasmids replicating in mammalian cells, but only when it was located in the termination region (180 degrees from ori), and only when cells were subjected to hypertonic shock to reduce topoisomerase II activity. Therefore, formation of catenated intertwines during termination of DNA replication was sequence dependent, suggesting that topoisomerase II acts behind replication forks in the termination region to remove intertwines generated by unwinding DNA rather than acting after replication is completed and catenates are formed. Under normal physiological conditions, CEN3 did not promote formation of catenated dimers in either mammalian or yeast cells. Therefore, CEN does not maintain association of sister chromatids during mitosis in yeast by introducing stable catenated intertwines during replication.  相似文献   

2.
Separation of the two newly replicated chromosomes in simian virus 40 late replicating intermediates (RI*) occurred by two pathways. The parental DNA strands were completely unwound, releasing circular DNA monomers with a gap in the nascent strand (Form II*), or duplex DNA in the termination region was not unwound, resulting in formation of catenated dimers. Under optimal conditions, both products were transient intermediates in replication, although Form II* was predominant. However, in hypertonic medium both RI* and catenated dimers accumulated, and Form II* was not observed. Hypertonic medium appeared to inhibit both DNA unwinding in the termination region and separation of catenated dimers. When the size of the genome or the position of the origin of replication was changed, termination occurred at sites other than that of wild-type SV40. Neither catenated dimers nor RI* DNA accumulated at these sites. Instead, RI* separated into Form II*. Unwinding parental DNA was more difficult at some termination regions than others. Therefore, although completion of DNA replication does not require a unique termination sequence, this sequence can determine the mode of separation for sibling molecules.  相似文献   

3.
The effect of ICRF-193, a noncleavable-complex-forming topoisomerase II inhibitor, on simian virus 40 (SV40) DNA and SV40 chromosome replication was examined by using an in vitro replication system composed of HeLa cell extracts and SV40 T antigen. Unlike the topoisomerase inhibitors VP-16 and camptothecin, ICRF-193 had little effect on DNA chain elongation during SV40 DNA replication, but high-molecular-weight DNAs instead of segregated monomer DNAs accumulated as major products. Analysis of the high-molecular-weight DNAs by two-dimensional gel electrophoresis revealed that they consisted of catenated dimers and late Cairns-type DNAs. Incubation of the replicated DNA with topoisomerase II resulted in conversion of the catenated dimers to monomer DNAs. These results indicate that ICRF-193 induces accumulation of catenated dimers and late Cairns-type DNAs by blocking the decatenating and relaxing activities of topoisomerase II in the late stage of SV40 DNA replication. In contrast, DNA replication of SV40 chromosomes was severely blocked by ICRF-193 at the late stage, and no catenated dimers were synthesized. These results are consistent with the finding that topoisomerase II is required for unwinding of the final duplex DNA in the late stage of SV40 chromosome replication in vitro.  相似文献   

4.
The structure of replicating simian virus 40 (SV40) minichromosomes was studied by DNA crosslinking with trimethyl-psoralen. The procedure was used both in vitro with extracted SV40 minichromosomes as well as in vivo with SV40-infected cells. Both procedures gave essentially the same results. Mature SV40 minichromosomes are estimated to contain about 27 nucleosomes (error +/- 2), except for those molecules with a nucleosome-free gap, which are interpreted to contain 25 nucleosomes (error +/- 2). In replicative intermediates, nucleosomes are present in the unreplicated parental stem with the replication fork possibly penetrating into the nucleosomal DNA before the histone octamer is removed. Nucleosomes reassociate on the newly replicated DNA branches at distances from the branch point of 225 ( +/- 145) nucleotides on the leading strand and of 285( +/- 120) nucleotides on the lagging strand. In the presence of cycloheximide, daughter duplexes contained unequal numbers of nucleosomes, supporting dispersive and random segregation of parental nucleosomes. These were arranged in clusters with normal nucleosome spacing. We detected a novel type of interlocked dimer comprising two fully replicated molecules connected by a single-stranded DNA bridge. We cannot decide whether these dimers represent hemicatenanes or whether the two circles are joined by a Holliday-type structure. The joining site maps within the replication terminus. We propose that these dimers represent molecules engaged in strand segregation.  相似文献   

5.
Simian Virus 40 (SV40) infected cells were pulse labeled with (3H) thymidine and chased either in the absence or in the presence of the cytotoxic drug VM26 (teniposide). We investigated the structure of labeled SV40 DNA and found that VM26 had no significant effect on replicative chain elongation but strongly inhibited the conversion of late replication intermediates to mature DNA daughter molecules. The late replicative SV40 DNA intermediates which accumulate in VM26 treated cells contained essentially full length labeled DNA strands. These newly synthesized strands were not part of two catenated interlocked SV40 monomers suggesting that the block occurred prior to the final ligation reaction. Since VM26 is known to be a specific inhibitor of DNA topoisomerase II we conclude that this enzyme is dispensable for the chain elongation of replicating SV40 DNA, but that it is essential for the termination of SV40 DNA replication cycles.  相似文献   

6.
Do damage-inducible responses in mammalian cells alter the interaction of lesions with replication forks? We have previously demonstrated that preirradiation of the host cell mitigates UV inhibition of SV40 DNA replication; this mitigation can be detected within the first 30 min after the test irradiation. Here we test the hypotheses that this mitigation involves either (1) rapid dimer removal, (2) rapid synthesis of daughter strands past lesions (trans-dimer synthesis), or (3) continued progression of the replication fork beyond a dimer. Cells preirradiated with UV were infected with undamaged SV40, and the effects of UV upon viral DNA synthesis were measured within the first hour after a subsequent test irradiation. In preirradiated cells, as well as in non-preirradiated cells, pyrimidine dimers block elongation of daughter strands; daughter strands grow only to a size equal to the interdimer distance along the parental strands. There is, within this first hour after UV, no evidence for trans-dimer synthesis, nor for more rapid dimer removal either in the bulk of the parental DNA or in molecules in the replication pool. Progression of the replication forks was analyzed by electron microscopy of replicating SV40 molecules. Dimers block replication-fork progression in preirradiated cells to the same extent as in non-preirradiated cells. These experiments argue strongly against the hypotheses that preirradiation of host cells results in either the rapid removal of dimers, trans-dimer synthesis, or continued replication-fork progression beyond dimers.  相似文献   

7.
Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.  相似文献   

8.
Studies to elucidate the reactions that occur at the eukaryotic replication fork have been limited by the model systems available. We have established a method for isolating and characterizing Simian Virus 40 (SV40) replication complexes. SV40 rolling circle complexes are isolated using paramagnetic beads and then incubated under replication conditions to obtain continued elongation. In rolling circle replication, the normal mechanism for termination of SV40 replication does not occur and the elongation phase of replication is prolonged. Thus, using this assay system, elongation phase reactions can be examined in the absence of initiation or termination. We show that the protein requirements for elongation of SV40 rolling circles are equivalent to complete SV40 replication reactions. The DNA produced by SV40 rolling circles is double-stranded, unmethylated and with a much longer length than the template DNA. These properties are similar to those of physiological replication forks. We show that proteins associated with the isolated rolling circles, including SV40 T antigen, DNA polymerase alpha, replication protein A (RPA) and RF-C, are necessary for continued DNA synthesis. PCNA is also required but is not associated with the isolated complexes. We present evidence suggesting that synthesis of the leading and lagging strands are co-ordinated in SV40 rolling circle replication. We have used this system to show that both RPA-protein and RPA-DNA interactions are important for RPA's function in elongation.  相似文献   

9.
In vivo-labeled SV40 replicating DNA molecules can be converted into covalently closed superhelical SV40 DNA (SV40(I) using a lysate of sv40-infected monkey cells containing intact nuclei. Replication in vitro occurred at one-third the in vivo rate for 30 min at 30 degrees. After 1 hour of incubation, about 54% of the replicating molecules had been converted to SV40(I), 5% to nicked, circular molecules (SV40(II), 5% to covalently closed dimers; the remainder failed to complete replication although 75% of the prelabeled daughter strands had been elongated to one-genome length. Density labeling in vitro showed that all replicating molecules had participated during DNA synthesis in vitro. Velocity and equilibrium sedimentation analysis of pulse-chased and labeled DNA using radioactive and density labels suggested that SV40 DNA synthesis in vitro was a continuation of normal ongoing DNA synthesis. Initiation of new rounds of SV40 DNA replication was not detectable.  相似文献   

10.
Replicative intermediates in UV-irradiated simian virus 40   总被引:5,自引:0,他引:5  
We have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [3H]thymidine, and isolated by centrifugation in CsCl/ethidium bromide gradients followed by BND-cellulose chromatography. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h, by which time the size of the newly-synthesized DNA exceeded the interdimer distance. No significant excision of dimers from parental strands in either replicative intermediates or Form I (closed circular) DNA molecules was detected. These data are consistent with the hypothesis that replication forks are temporarily blocked by dimers encountered on the leading strand side of the fork, but that daughter strand continuity opposite dimers is eventually established. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strands contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from UV-damaged SV40 replicative intermediates.  相似文献   

11.
Perturbations of Simian Virus 40 (SV40) DNA replication by ultraviolet (UV) light during the lytic cycle in permissive monkey CV-1 cells resemble those seen in host cell DNA replication. Formation of Form I DNA molecules (i.e. completion of SV40 DNA synthesis) was more sensitive to UV irradiation than synthesis of replicative intermediates or Form II molecules, consistent with inhibition of DNA chain elongation. The observed amounts of [3H]thymidine incorporated in UV-irradiated molecules could be predicted on the assumption that pyrimidine dimers are responsible for blocking nascent DNA strand growth. The relative proportion of labeled Form I molecules in UV-irradiated cultures rapidly increased to near-control values with incubation after 20 or 40 J/m2 of light (0.9--1.0 or 1.8--2.0 dimers per SV40 genome, respectively). This rapid increase and the failure of Form II molecules to accumulate suggest that SV40 growing forks can rapidly bypass many dimers. Form II molecules formed after UV irradiation were not converted to linear (Form III) molecules by the dimer-specific T4 endonuclease V, suggesting either that there are no gaps opposite dimers in these molecules or that T4 endonuclease V cannot use Form II molecules as substrates.  相似文献   

12.
C G Shin  R M Snapka 《Biochemistry》1990,29(49):10934-10939
Exposure of infected CV-1 cells to specific type I and type II topoisomerase poisons caused strong protein association with distinct subsets of simian virus 40 (SV40) DNA replication intermediates. On the basis of the known specificity and mechanisms of action of these drugs, the proteins involved are assumed to be the respective topoisomerases. Camptothecin, a topoisomerase I poison, caused strong protein association with form II (relaxed circular) and form III (linear) viral genomes and replication intermediates having broken DNA replication forks but not with form I (superhelical) viral DNA or normal late replication intermediates which were present. In contrast, type II topoisomerase poisons caused completely replicated forms and late viral replication forms to be tightly bound to protein--some to a greater extent than others. Different type II topoisomerase inhibitors caused distinctive patterns of protein association with the replication intermediates present. Both intercalating and nonintercalating type II topoisomerase poisons caused a small amount of form I (superhelical) SV40 DNA to be protein-associated in vivo. The protein complex with form I viral DNA was entirely drug-dependent and strong, but apparently noncovalent. The protein associated with form I DNA may represent a drug-stabilized "topological complex" between type II topoisomerase and SV40 DNA.  相似文献   

13.
The reconstituted pBR322 DNA replication system has been used to identify a mechanism for the processing and segregation of daughter DNA molecules by Escherichia coli topoisomerase I (Topo I) during the terminal stages of DNA replication. At low concentrations of Topo I (sufficient to confer specificity to the replication system for DNA templates containing a ColE1-type origin of DNA replication), the major products of the replication reaction were: multigenome-length, linear, double-stranded DNA molecules (an aberrant product); multiply interlinked, catenated, supercoiled DNA dimers; and a last Cairns-type replication intermediate. Thirty- to fifty-fold higher concentrations of Topo I led to the appearance of form II and form I pBR322 DNA as the only synthetic products. A model was developed in which Topo I, bound to a single-stranded gap on the parental H strand DNA just upstream of the origin of DNA replication, catalyzed the decatenation of the intermolecular linkages between the two daughter DNA molecules that were generated by primosome-catalyzed unwinding of the residual nonreplicated parental duplex DNA in the last Cairns-type intermediate. At low concentrations of Topo I, however, the intermolecular linkages persisted and, within the context of this replication system, were not removed by DNA gyrase. In support of this model it was demonstrated that: there was a single-stranded gap between the nonreplicated parental duplex region and the 5' end of the nascent leading-strand DNA; the number of intermolecular linkages in the catenated supercoiled DNA dimers was inversely related to the concentration of Topo I; the supercoiled DNA dimers did not serve as a precursor of the final form I DNA product; and maturation of the last Cairns-type replication intermediate to form I DNA was not affected by the presence of coumermycin, a potent inhibitor of the activities of DNA gyrase.  相似文献   

14.
Simian virus 40 (SV40)-infected CV1 cells transiently exposed to hypoxia show a burst of viral replication immediately after reoxygenation. DNA precursor incorporation and analysis of growing daughter strands by alkaline sedimentation demonstrated that SV40 DNA synthesis began with a lag of about 3 to 5 min after reoxygenation followed by a largely synchronous viral replication round. Viral RNA-DNA primers complementary to the SV40 origin region were not detectable before 3 min upon reoxygenation. A distinct form of circular closed, supercoiled SV40 DNA was detectable as soon as 3 min after reoxygenation but not under hypoxia. Sensitivity to the DNA nuclease Bal 31 and migration behavior in chloroquine-containing agarose gels suggested that this DNA species was highly underwound compared to other SV40 topoisomers and was probably related to the highly underwound form U DNA first described by Dean et al. (F. B. Dean, P. Bullock, Y. Murakami, C. R. Wobbe, L. Weissbach, and J. Hurwitz, Proc. Natl. Acad. Sci. USA 84:16–20, 1987), in vitro. 3′-OH ends of presumed RNA-DNA primers could be detected in form U by 3′ end labeling with T7 polymerase. Addition of aphidicolin to the cells before reoxygenation led to a pronounced accumulation of form U DNA containing RNA-DNA primers. In vivo pulse-chase kinetic studies performed with aphidicolin-treated SV40-infected cells showed that form U is an initial intermediate of SV40 DNA replication which matures into higher-molecular-weight replication intermediates and into SV40 form I DNA after removal of the inhibitor. These results suggest that in vivo initiation of SV40 replication is arrested by hypoxia before origin unwinding and primer synthesis.  相似文献   

15.
Initiation of simian virus 40 DNA replication in vitro.   总被引:28,自引:3,他引:25       下载免费PDF全文
Exogenously added simian virus 40 (SV40) DNA can be replicated semiconservatively in vitro by a mixture of a soluble extract of HeLa cell nuclei and the cytoplasm from SV40-infected CosI cells. When cloned DNA was used as a template, the clone containing the SV40 origin of DNA replication was active, but a clone lacking the SV40 origin was inactive. The major products of the in vitro reaction were form I and form II SV40 DNAs and a small amount of form III. DNA synthesis in extracts began at or near the in vivo origin of SV40 DNA synthesis and proceeded bidirectionally. The reaction was inhibited by the addition of anti-large T hamster serum, aphidicolin, or RNase but not by ddNTP. Furthermore, this system was partially reconstituted between HeLa nuclear extract and the semipurified SV40 T antigen instead of the CosI cytoplasm. It is clear from these two systems that the proteins containing SV40 T antigen change the nonspecific repair reaction performed by HeLa nuclear extract alone to the specific semiconservative DNA replication reaction. These results show that these in vitro systems closely resemble SV40 DNA replication in vivo and provide an assay that should be useful for the purification and subsequent characterization of viral and cellular proteins involved in DNA replication.  相似文献   

16.
Ecteinascidin 743 (Et743) is a highly cytotoxic anticancer agent isolated from the squirt Ecteinascidia turbinate, which alkylates DNA in the minor groove at GC-rich sequences resulting in an unusual bending toward the major groove. The ability of Et743 to block DNA replication was studied using the well-established simian virus (SV40) model for mammalian DNA replication in cells and cell-free extracts. Intracellular SV40 DNA isolated from Et743-treated BSC-1 cells was analyzed by native, two-dimensional agarose gel electrophoresis. A low frequency of Et743 adducts detected at 30-100 nM drug concentrations inhibited SV40 origin activity and induced formation of unusual DNA replication intermediates. Under cell-free conditions, only a high Et743 adduct frequency reduced SV40 DNA synthesis. Comparative studies involving related DNA alkylators, tomamycin and saframycin A, revealed inhibition of SV40 DNA replication in cells at concentrations approximately 10 times higher than Et743. Under cell-free conditions tomamycin- or saframycin-A-adducted DNA templates inhibited DNA synthesis similarly to Et743. Et743 appears to be unusual among other alkylators, because its adducts strongly inhibit intracellular SV40 DNA replication but are relatively weak as cis inhibitors as measured under cell-free conditions.  相似文献   

17.
18.
The responses to u.v. of two cell lines derived from the Indian muntjac are described. The u.v. sensitivity of the diploid cell falls within the range of most normal mammalian cells while the other, a heteroploid cell, transformed by SV40, is much more sensitive to killing. This hypersensitivity cannot be explained by defective excision repair: the two cell types are indistinguishable in this activity as judged by inhibitor-associated DNA break accumulation and unscheduled DNA synthesis. Rather, the SV40 transformed cells have a pronounced inability to recover normal DNA replication after u.v. These cells are, therefore, defective in a post-replication recovery mechanism and in this respect resemble the behaviour of the variant form of xeroderma pigmentosum. Their limited ability to recover normal levels of RNA synthesis after u.v. hints at the complexity of the phenotype.  相似文献   

19.
A soluble system was developed that could support DNA replication in simian virus 40 (SV40) chromosomes. DNA synthesis in this system required the presence of purified SV40 large tumor antigen, SV40 chromosomes prepared from virus-infected monkey cells, a crude extract from HeLa cells, and several low-molecular-weight components. In comparison to the replication of purified SV40 form I DNA, the rate of DNA synthesis was 15 to 20% in this system. DNA synthesis started near the replication origin of SV40 and proceeded bidirectionally in a semiconservative manner. Micrococcal nuclease digestion experiments revealed that the replicated DNA produced in this system became organized into a regularly spaced array of nucleosome core particles when an appropriate amount of purified HeLa core histones was added to the reaction mixture. SV40 form I DNA replicating under the same conditions was also assembled into nucleosomes, which were arranged in a rather dispersed manner and formed an aberrant chromatin structure.  相似文献   

20.
Simian virus 40 (SV40) DNA replication was studied in monolayers of infected monkey CV-1 cells, permeabilized with lysolecithin, by incubation with [alpha-32P]dTTP, the other dNTPs and rNTPs and an ATP-regenerating system. Analysis of the labeled SV40 DNA by sedimentation in alkaline sucrose gradients showed that about 30% of the material synthesized by the permeable cells in the course of 60 min consisted of covalently closed circular SV40 DNA (form I), with the remainder sedimenting as relaxed circles (form II) and replicative intermediates between 18 S and 4 S. The synthesis of SV40 DNA in the permeabilized cell system required the presence of all four dNTPs and was completely inhibited by aphidicolin, consistent with the involvement of DNA polymerase alpha. A detailed analysis of the distribution of radioactivity in the DNA synthesized involved cleavage with BstNI restriction endonuclease, followed by polyacrylamide gel electrophoresis and radioautography. The extent of labeling of all restriction fragments was nearly proportional to their length, suggesting that the entire SV40 chromosome was being replicated. This was confirmed by the careful comparison of the rate of labeling of a DNA fragment which includes the replication origin, and a fragment which includes the replication terminus. Their labeling was proportional to their size, regardless of the time for which the labeling was carried out. This demonstrated that the replication of the entire SV40 chromosome occurred in a steady state and that the start and termination of replication continuously occurred throughout the labeling period. The availability of an in vitro system in which replication of SV40 DNA undergoes multiple replication cycles should be of considerable value in the analysis of the mechanism of replication of this viral genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号