首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein called p97 in mammals and Cdc48 in budding and fission yeast is a homo-hexameric, ring-shaped, ubiquitin-dependent ATPase complex involved in a range of cellular functions, including protein degradation, vesicle fusion, DNA repair, and cell division. The cdc48+ gene is essential for viability in fission yeast, and point mutations in the human orthologue have been linked to disease. To analyze the function of p97/Cdc48 further, we performed a screen for cold-sensitive suppressors of the temperature-sensitive cdc48-353 fission yeast strain. In total, 29 independent pseudo revertants that had lost the temperature-sensitive growth defect of the cdc48-353 strain were isolated. Of these, 28 had instead acquired a cold-sensitive phenotype. Since the suppressors were all spontaneous mutants, and not the result of mutagenesis induced by chemicals or UV irradiation, we reasoned that the genome sequences of the 29 independent cdc48-353 suppressors were most likely identical with the exception of the acquired suppressor mutations. This prompted us to test if a whole genome sequencing approach would allow us to map the mutations. Indeed genome sequencing unambiguously revealed that the cold-sensitive suppressors were all second site intragenic cdc48 mutants. Projecting these onto the Cdc48 structure revealed that while the original temperature-sensitive G338D mutation is positioned near the central pore in the hexameric ring, the suppressor mutations locate to subunit-subunit and inter-domain boundaries. This suggests that Cdc48-353 is structurally compromized at the restrictive temperature, but re-established in the suppressor mutants. The last suppressor was an extragenic frame shift mutation in the ufd1 gene, which encodes a known Cdc48 co-factor. In conclusion, we show, using a novel whole genome sequencing approach, that Cdc48-353 is structurally compromized at the restrictive temperature, but stabilized in the suppressors.  相似文献   

2.
Chattoo BB  Palmer E  Ono B  Sherman F 《Genetics》1979,93(1):67-79
A total of 358 lys2 mutants of Saccharomyces cerevisiae have been characterized for suppressibility by the following suppressors: UAA and UAG suppressors that insert tyrosine, serine or leucine; a putative UGA suppressor; an omnipotent suppressor SUP46; and a frameshift suppressor SUF1–1. In addition, the lys2 mutants were examined for phenotypic suppression by the aminoglycoside antibiotic paromomycin, for osmotic remediability and for temperature sensitivity. The mutants exhibited over 50 different patterns of suppression and most of the nonsense mutants appeared similar to nonsense mutants previously described. A total of 24% were suppressible by one or more of the UAA suppressors, 4% were suppressible by one or more of the UAG suppressors, while only one was suppressible by the UGA suppressor and only one was weakly suppressible by the frameshift suppressor. One mutant responded to both UAA and UAG suppressors, indicating that UAA or UAG mutations at certain rare sites can be exceptions to the specific action of UAA and UAG suppressors. Some of the mutants appeared to require certain types of amino acid replacements at the mutant sites in order to produce a functional gene product, while others appeared to require suppressors that were expressed at high levels. Many of the mutants suppressible by SUP46 and paromomycin were not suppressible by any of the UAA, UAG or UGA suppressors, indicating that omnipotent suppression and phenotypic suppression need not be restricted to nonsense mutations. All of the mutants suppressible by SUP46 were also suppressible by paromomycin, suggesting a common mode of action of omnipotent suppression and phenotypic misreading.  相似文献   

3.
Analyses of suppressor mutations have been extremely valuable in understanding gene function. However, techniques for mapping suppressor mutations are not available for most bacterial species. Here, we used high-throughput sequencing technology to identify spontaneously arising suppressor mutations that enabled disruption of rpoE (which encodes σE) in Vibrio cholerae, the agent of cholera. The alternative sigma factor σE, which is activated by envelope stress, promotes expression of factors that help preserve and/or restore cell envelope integrity. In Escherichia coli, rpoE is an essential gene that can only be disrupted in the presence of additional suppressor mutations. Among a panel of independent V. cholerae rpoE mutants, more than 75% contain suppressor mutations that reduce production of OmpU, V. cholerae’s principal outer membrane porin. OmpU appears to be a key determinant of V. cholerae’s requirement for and production of σE. Such dependence upon a single factor contrasts markedly with regulation of σE in E. coli, in which numerous factors contribute to its activation and none is dominant. We also identified a suppressor mutation that differs from all previously described suppressors in that it elevates, rather than reduces, σE’s activity. Finally, analyses of a panel of rpoE mutants shed light on the mechanisms by which suppressor mutations may arise in V. cholerae.  相似文献   

4.
The molecular complex containing the phototaxis receptor sensory rhodopsin I (SRI) and transducer protein HtrI (halobacterial transducer for SRI) mediates color-sensitive phototaxis responses in the archaeon Halobacterium salinarum. One-photon excitation of the complex by orange light elicits attractant responses, while two-photon excitation (orange followed by near-UV light) elicits repellent responses in swimming cells. Several mutations in SRI and HtrI cause an unusual mutant phenotype, called orange-light-inverted signaling, in which the cell produces a repellent response to normally attractant light. We applied a selection procedure for intragenic and extragenic suppressors of orange-light-inverted mutants and identified 15 distinct second-site mutations that restore the attractant response. Two of the 3 suppressor mutations in SRI are positioned at the cytoplasmic ends of helices F and G, and 12 suppressor mutations in HtrI cluster at the cytoplasmic end of the second HtrI transmembrane helix (TM2). Nearly all suppressors invert the normally repellent response to two-photon stimulation to an attractant response when they are expressed with their suppressible mutant alleles or in an otherwise wild-type strain. The results lead to a model for control of flagellar reversal by the SRI-HtrI complex. The model invokes an equilibrium between the A (reversal-inhibiting) and R (reversal-stimulating) conformers of the signaling complex. Attractant light and repellent light shift the equilibrium toward the A and R conformers, respectively, and mutations are proposed to cause intrinsic shifts in the equilibrium in the dark form of the complex. Differences in the strength of the two-photon signal inversion and in the allele specificity of suppression are correlated, and this correlation can be explained in terms of different values of the equilibrium constant (Keq) for the conformational transition in different mutants and mutant-suppressor pairs.  相似文献   

5.
One hundred and thirty-three spontaneous and induced mutants of the met15 locus in Saccharomyces cerevisiae were characterized with respect to temperature sensitivity, osmotic remediability, interallelic complementation, and suppressibility by amber and ochre suppressors. Forty mutants are osmotic remedial; 17 of these, and no others, are also temperature-sensitive. Seven of 133 mutations are suppressible by an amber suppressor and 11 are suppressible by an ochre suppressor. Seventy percent of the mutants exhibited interallelic complementation, suggesting that the functional gene product of the met15 gene is a multimeric protein. Relative map positions of 30 met15 were estimated from the frequencies of X-ray-induced mitotic reversion of various heteroallelic diploids. All complementing nonsense mutations are located near one end of the gene in contrast to other nonsense mutations which span most of the gene, thus relating the direction of translation of the mRNA with respect to the fine-structure map. Recombination studies indicated that two of 30 mutants contained deletions of the entire met15 locus.—It was established that a variety of mutational types, including missense, nonsense, and deletions, are recovered with this unique system in which both forward and reverse mutations can be selected on the basis of methyl mercury resistance and methionine requirement of the met15 mutants.  相似文献   

6.
Reversion analysis of mutants of unc-22 IV, a gene affecting muscle structure and function in Caenorhabditis elegans, led to the isolation of six extragenic dominant suppressors of the “twitching” phenotype of unc-22 mutants. All six suppressors are new alleles of unc-54 I, the major body wall myosin heavy chain gene. Homozygous suppressor strains are slow, stiff and have normal muscle structure, whereas previously identified unc-54 alleles confer flaccid paralysis and drastic reduction in thick filament number and organization. Placement of the three suppressor mutations s74, s77 and s95 on the genetic fine structure map of unc-54 demonstrates that they are clustered near the right end of the map. Since this end of the gene corresponds to the 5′ end of the coding sequence, these suppressor mutations probably result in amino acid substitutions in the globular head of the myosin molecule, and should be of value in studies of myosin force generation.  相似文献   

7.
Summary A class of suppressor mutations restores, in pleiotropic sporulation mutants of B. subtilis (SPO mutants), the wild type level of resistance to Polymyxin, and, most often, other properties of the wild strain as well, but never the ability to sporulate. These suppressors, extracistronic, are active on mutations occurring in any one of the 5 genes in which SPO mutations have been found. The phenotype of the suppressed strains is dependent on both the suppressed (SPO) and the suppressive mutations. All these suppressors are located in a single locus and some of them are thermosensitive. The evidence suggests that a physiological compensation is at work in the partial revertants, so that the locus at which the suppressors are located was called cps X. Two hypotheses are discussed that might account for these observations.  相似文献   

8.
Amber mutants of T1 were grown on each of three donor strains which were identical except that they carried different suppressors: respectively, supD, supE, and supB. The efficiency with which the mutants were able to transduce was tested after growth on each donor. In general, it was found that functions which control the synthesis of phage DNA usually caused significant increases in the efficiency of transduction (EOT). A few mutants located in genes essential for head production caused significant decreases in EOT. The presence of a particular suppressor in a donor can cause noteworthy changes in the EOT by certain of the mutant phages. Amber mutations in gene 3 of T1 were extremely sensitive to the particular suppressor present in the donor, showing a 17-fold decrease in EOT compared with other mutants after growth in donors with the supD suppressor and a 75-fold increase after growth in supE donors. Increases in EOT by early genes of T1 do not seem to be caused by a lack of competition of bacterial DNA with phage DNA during packaging since, in most instances, infective phage were produced in relatively normal amounts compared with wild-type T1. Phage DNA synthesis and degradations of the host chromosome are closely coupled in T1 infections; we believe that increases in EOT by mutants of early functions are due to inefficient degradation of the host chromosome.  相似文献   

9.
Suppressors of ICR-induced mutations that exhibit behavior similar to bacterial frameshift suppressors have been identified in the yeast Saccharomyces cerevisiae. The yeast suppressors have been divided into two groups. One of these groups (Group II: SUF1, SUF3, SUF4, SUF5 and SUF6) appears to include a set of informational suppressors in which the vehicle of suppression is glycyl-tRNA. Some of the genetic properties of Group II suppressors are described in this communication.——Corevertants of the Group II frameshift mutations his4–519 and leu2–3 have been characterized to determine the spectrum of reversion events induced by the frameshift mutagen ICR-170. Seventythree ICR-induced corevertants were analyzed. With the exception of one corevertant, which carried an allele of SUF1, all carried alleles of SUF3 or SUF5. SUF1, SUF3, SUF4 and SUF6 were represented among spontaneous and UV-induced corevertants. In the course of these experiments one of the suppressors was mapped. SUF5, the probable structural gene for tRNAGLY1, is located between ade2 and ade9 on chromosome XV.——SUF1, SUF4 and SUF6 have novel properties and comprise a distinct subset of suppressors. Although these suppressors show no genetic linkage to each other, they share several common features including lethality in haploid pairwise combinations, reduced tRNAGLY3 isoacceptor activity and increased efficiency of suppression in strains carrying the cytoplasmically inherited [PSI] element. In addition, strains carrying SUF1, SUF4 or SUF6 are phenotypically unstable and give rise to mitotic Suf+ segregants at high frequency. These segregants invariably contain a linked, second-site mutation that maps in or adjacent to the suppressor gene itself. Strains carrying any of these suppressors also give rise to mitotic segregants that exhibit enhanced efficiency of suppression; mutations responsible for this phenotype map at two loci, upf1 and upf2. These genes show no genetic linkage to any of the Group II suppressors.——Methods that permit positive selection for mutants with decreased or enhanced efficiency of suppression have been devised in order to examine large numbers of variants. The importance of these interacting mutants is underscored by their potential utility in studying suppressor function at the molecular level.  相似文献   

10.
CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY - ami + cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to iron and PG-targeting agents.  相似文献   

11.
Hulda Barben 《Genetica》1966,37(1):109-148
By comparing the intragenic distribution of suppressor sensitive mutants in fine structure maps, 13 allele specific suppressor mutations (isolated from revertants in adenine dependent mutants of constitutionad 7) have been analyzed for their allele specific patterns of action in three different groups of mutants blocked in adenine biosynthesis. The 13 suppressor mutations, which have resulted from mutations at seven different suppressor loci, are characterized by four different suppression patterns. Three of these patterns, which partially overlap, are not locus specific since they include sensitive mutants at each of the three lociad 7, ad6 andad 1 studied. The relative frequency of mutants sensitive to one or the other of the suppressors of this type, the absence of osmotic-remedial strains among the suppressor sensitive mutants, and the polarized complementation behaviour of one suppressiblead 6 mutant and two suppressiblead 1 mutants capable of interallelic complementation, suggest that the suppression mechanism involves misreading of a mutant triplet of the nonsense type.  相似文献   

12.
Summary Twenty-one suppressor gene mutations which suppress the met-5.1 missense mutation of Coprinus were separated into six groups (A-F) on the basis of dominance or recessiveness, linkage to the met-5 locus, comlementation in heterozygous cells and growth behaviour. The actual number of suppressor loci could not be determined because crosses between suppressed mutants were inviable. The allele specificity of group A, C, D and F suppressors was confirmed by appropriate crosses. Group B and E suppressors were not tested because of close linkage to the met-5 locus. No evidence for functional suppression of met-5 mutations was obtained thus it is likely that all the suppressors cause translational corelation of met-5.1. Suppressors in four groups (C-F) have properties expected of tRNA structural gene mutations: the group C mutation is dominant, the other mutations are recessive but do not complement in heterozygous cells. The relative efficiencies of the tRNA species involved was assessed by comparing the degree to which the different sup + mutations depressed the growth rate on methionine supplemented medium. The dominant mutation depressed growth to the greatest extent and is, therefore, the most efficient suppressor. The least efficient suppressors did not depress growth at all. When growth was compared on minimal medium it was found that the more efficient the suppressor the less well it restored growth. The mutations in groups A and B depressed growth more than the tRNA mutations but affect some other component in translation because they are recessive and complement normally. It is suggested that they may act to alter tRNA modifying enzymes.  相似文献   

13.
Summary The acu-1 locus in Coprinus is the structural gene for acetyl-CoA synthetase. Five suppressor gene mutations, which suppress the acu-1,34 missense allele, were induced by mutagen treatment. All five suppressors were shown to have properties expected for tRNA structural gene mutations: they are recessive, they show a gene dosage effect in any doubly heterozygous combination of two sup + mutations and they are allele specific in action.Crosses between suppressed mutants established that at least four suppressor loci were represented. Doubly suppressed mutants derived from these crosses were used to show that the gene dosage effect is maintained when two sup + mutations are in cis as well as trans combinations in the two nuclei of the basidiomycete dikaryon.Extracts of the unsuppressed acu-1.34 mutant contained less than 2% of wild type acetyl-CoA synthetase activity whereas extracts of four of the five suppressor strains showed activities ranging from 28 to 37% of wild type. Only a slight increase in activity was detected in the fifth suppressor strain but this was associated with a temperature sensitive sup + phenotype. All five sup + mutations restored the ability of the acu-1.34 mutant to induce isocitrate lyase, an enzyme which, under the conditions of growth used, can only be induced when acetyl-CoA synthetase activity is present. Thus all five suppressors act to restore normal acu-1 protein function.  相似文献   

14.
Mischarging mutants of Escherichia coli sup3 tyrosine transfer RNA have been isolated by selecting for suppression of bacterial amber mutations not suppressed by sup3. Five of the mutants have single base changes in the amino acid acceptor stem (A1, A2, U80, U81 and G82). Mutants A1 and A2 are weak thermosensitive suppressors from which thermostable derivatives have been isolated. Some of these derivatives affect the amount of tRNA synthesized but not the sequence (precursor or promoter mutations), and others are double mutants A1U81 and A2U80. The latter mutant does not mischarge. The efficiency of suppression of A1 and A2 can also be increased by recombination events that lead to duplication and triplication of the suppressor gene.The amino acid inserted by some of these mutants at the amber site has been determined. Mutant A1 inserts glutamine, while U81 and A1U81 insert both glutamine and tyrosine.Taken together the results show that the terminal part of the amino acid acceptor stem has an important role in the specificity of aminoacylation by the glutamine and tyrosine synthetase.  相似文献   

15.
Five proteins (MotA, MotB, FliG, FliM and FliN) may be involved in energizing flagellar rotation inEscherichia coli. To study interactions between the Mot proteins, and between them and the three Fli proteins of the switch-motor complex, we have isolated extragenic suppressors of dominant and partially dominantmotBmissense mutations. Four of the 13motBmutations yielded partially allele-specific suppressors. Of the suppressing mutations, 57 are in themotAgene, eight are infliG, and one is infliM; no suppressor was identified infliN. The prevalence of suppressors infliGsuggests that FliG interacts rather directly with the Mot proteins. The behaviour of cells in tethering and swarm assays indicates that themotAsuppressors are more efficient than thefliGorfliMsuppressors. Some of the suppressing mutations themselves confer distinctive phenotypes inmotB+cells. We propose a model in which mutations affecting residues in or near the putative peptidoglucan-binding region of MotB misalign the stator relative to the rotor. We suggest that most of the suppressors restore motility by introducing compensatory realignments in MotA or FliG.  相似文献   

16.
We have characterized recessive and dominant omnipotent suppressor mutations obtained by conversion of the leu2-1 UAA mutation and the met8-UAG mutation in a ψ+ strain of Saccharomyces cerevisiae. The suppressors that act recessively upon these markers fell into two complementation groups; the sup47 and sup36 suppressors show linkage to the tyr1 locus and the aro1 locus, respectively. Of the suppressors acting dominantly upon both markers, those linked to the tyr1 locus are alleles of the SUP46 ribosomal mutation. The sup47 suppressors differ from the SUP46 suppressors not only in their suppressor activities in heterozygous diploids but also in their map positions relative to the tyr1 locus and their effects on the S11 ribosomal protein. The remaining dominant suppressors are not alleles of sup36 as judged by linkage analysis. The recessive suppressors and the dominant suppressors also differ in their effects on cell growth.  相似文献   

17.
Two classes of frameshift suppressors distributed at 22 different loci were identified in previous studies in the yeast Saccharomyces cerevisiae. These suppressors exhibited allele-specific suppression of +1 G:C insertion mutations in either glycine or proline codons, designated as group II and group III frameshift mutations, respectively. Genes corresponding to representative suppressors of each group have been shown to encode altered glycine or proline tRNAs containing four base anticodons.—This communication reports the existence of a third class of frameshift suppressor that exhibits a wider range in specificity of suppression. The suppressors map at three loci, suf12, suf13, and suf14, which are located on chromosomes IV, XV, and XIV, respectively. The phenotypes of these suppressors suggest that suppression may be mediated by genes other than those encoding the primary structure of glycine or proline tRNAs.  相似文献   

18.
The second division of the gut precursor E cells is lethally accelerated during Caenorhabditis elegans gastrulation by mutations in the emb-5 gene, which encodes a presumed nuclear protein. We have isolated suppressor mutations of the temperature-sensitive allele emb-5(hc61), screened for them among dpy and other mutations routinely used as genetic markers, and identified eight emb-5 suppressor genes. Of these eight suppressor genes, at least four encode extracellular matrix proteins, i.e., three collagens and one proteoglycan. The suppression of the emb-5 gastrulation defect seemed to require the maternal expression of the suppressors. Phenotypically, the suppressors by themselves slowed down early embryonic cell divisions and corrected the abnormal cell-division sequence of emb-5 mutant embryos. We propose an indirect stress-response mechanism to be the main cause of the suppression because: (1) none of these suppressors is specific, either to particular temperature-sensitive emb-5 alleles or to the emb-5 gene; (2) suppressible alleles of genes, reported here or elsewhere, are temperature sensitive or weak; (3) the suppression is not strong but marginal; (4) the suppression itself shows some degree of temperature dependency; and (5) none of the extracellular matrix proteins identified here is known to be expressed in oocytes or early embryos, despite the present observation that the suppression is maternal.  相似文献   

19.
We have previously reported the isolation and characterization of UAA suppressors from a haploid strain of yeast Saccharomyces cerevisiae containing the ψ+ non-Mendelian determinant which increases the efficiency of action of certain suppressors (Ono et al., 1979). Most of the suppressors caused the insertion of either tyrosine or serine. In contrast, the pattern of suppression of nutritional markers suggested that the rare suppressor, SUP26, inserted in an amino acid other than tyrosine or serine. In this investigation we report the characterization of additional suppressors, similar to SUP26, that were isolated on a medium lacking uracil and containing canavanine; this medium is expected to exclude serine-inserting suppressors because they do not suppress the ura4-1 marker, and to exclude tyrosine-inserting suppressors because they suppress the can1-100 marker. The total of 155 revertants similar to the SUP26 suppressor were analyzed genetically and these could be assigned to one or another of the six distinct loci SUP26, SUP27, SUP28, SUP29, SUP32 and SUP33. The SUP26, SUP27 and SUP29 loci mapped on chromosomes XII, IV and X, respectively. The detailed map position of the SUP29 suppressor suggests that it may be allelic to the SUP30 suppressor reported by Hawthorne &; Mortimer (1968). These six suppressors had the same pattern of suppression of UAA nutritional markers and all of them had a similar low efficiency of action on the iso-1-cytochrome c mutation cyc1-72. The efficiency of each of these suppressors was increased by a chromosomal allo-suppressor, sal. Each of the six suppressors caused the insertion of leucine in iso-1-cytochrome c at the UAA site of the cyc1-72 mutation. It is suggested that the gene products of these suppressors are redundant forms of the same leucine transfer RNA.  相似文献   

20.
Translation initiation represents a key step during regulation of gene expression in chloroplasts. Here, we report on the identification and characterization of three suppressor point mutations which overcome a translational defect caused by the deletion of a U-rich element in the 5′-untranslated region (5′-UTR) of the psbD mRNA in the green alga Chlamydomonas reinhardtii. All three suppressors affect a secondary RNA structure encompassing the psbD AUG initiation codon within a double-stranded region as judged by the analysis of site-directed chloroplast mutants as well as in vitro RNA mapping experiments using RNase H. In conclusion, the data suggest that these new element serves as a negative regulator which mediates a rapid shut-down of D2 synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号