首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The highly conserved AAA ATPase p97 (VCP/CDC48) has well-established roles in cell cycle progression, proteasome degradation and membrane dynamics. Gene disruption in Saccromyces cerevisiae, Drosophila melanogaster and Trypanosoma brucei demonstrated that p97 is essential in unicellular and multicellular organisms. To explore the requirement for p97 in mammalian cell function and embryogenesis, we disrupted the p97 locus by gene targeting. Heterozygous p97+/- mice were indistinguishable from their wild-type littermates, whereas homozygous mutants did not survive to birth and died at a peri-implantation stage. These results show that p97 is an essential gene for early mouse development.  相似文献   

3.
CDC48/p97 is a conserved homohexameric AAA-ATPase chaperone required for a variety of cellular processes but whose role in the development of a multicellular model system has not been examined. Here, we have used reverse genetics, visualization of a functional Arabidopsis (Arabidopsis thaliana) CDC48 fluorescent fusion protein, and morphological analysis to examine the subcellular distribution and requirements for AtCDC48A in planta. Homozygous Atcdc48A T-DNA insertion mutants arrest during seedling development, exhibiting decreased cell expansion and displaying pleiotropic defects in pollen and embryo development. Atcdc48A insertion alleles show significantly reduced male transmission efficiency due to defects in pollen tube growth. Yellow fluorescent protein-AtCDC48A, a fusion protein that functionally complements the insertion mutant defects, localizes in the nucleus and cytoplasm and is recruited to the division mid-zone during cytokinesis. The pattern of nuclear localization differs according to the stage of the cell cycle and differentiation state. Inducible expression of an Atcdc48A Walker A ATPase mutant in planta results in cytokinesis abnormalities, aberrant cell divisions, and root trichoblast differentiation defects apparent in excessive root hair emergence. At the biochemical level, our data suggest that the endogenous steady-state protein level of AtCDC48A is dependent upon the presence of ATPase-active AtCDC48A. These results demonstrate that CDC48A/p97 is critical for cytokinesis, cell expansion, and differentiation in plants.  相似文献   

4.
5.
Yeast mutants of cell cycle gene cdc48-1 arrest as large budded cells with microtubules spreading aberrantly throughout the cytoplasm from a single spindle plaque. The gene was cloned and disruption proved it to be essential. The CDC48 sequence encodes a protein of 92 kD that has an internal duplication of 200 amino acids and includes a nucleotide binding consensus sequence. Vertebrate VCP has a 70% identity over the entire length of the protein. Yeast Sec18p and mammalian N-ethylmaleimide-sensitive fusion protein, which are involved in intracellular transport, yeast Pas1p, which is essential for peroxisome assembly, and mammalian TBP-1, which influences HIV gene expression, are 40% identical in the duplicated region. Antibodies against CDC48 recognize a yeast protein of apparently 115 kD and a mammalian protein of 100 kD. Both proteins are bound loosely to components of the microsomal fraction as described for Sec18p and N-ethylmaleimide-sensitive fusion protein. This similarity suggests that CDC48p participates in a cell cycle function related to that of N-ethylmaleimide-sensitive fusion protein/Sec18p in Golgi transport.  相似文献   

6.
The components of the cellular machinery that accomplish the various complex and dynamic membrane fusion events that occur at the division plane during plant cytokinesis, including assembly of the cell plate, are not fully understood. The most well-characterized component, KNOLLE, a cell plate-specific soluble N-ethylmaleimide-sensitive fusion protein (NSF)-attachment protein receptor (SNARE), is a membrane fusion machine component required for plant cytokinesis. Here, we show the plant ortholog of Cdc48p/p97, AtCDC48, colocalizes at the division plane in dividing Arabidopsis cells with KNOLLE and another SNARE, the plant ortholog of syntaxin 5, SYP31. In contrast to KNOLLE, SYP31 resides in defined punctate membrane structures during interphase and is targeted during cytokinesis to the division plane. In vitro-binding studies demonstrate that AtCDC48 specifically interacts in an ATP-dependent manner with SYP31 but not with KNOLLE. In contrast, we show that KNOLLE assembles in vitro into a large approximately 20S complex in an Sec18p/NSF-dependent manner. These results suggest that there are at least two distinct membrane fusion pathways involving Cdc48p/p97 and Sec18p/NSF that operate at the division plane to mediate plant cytokinesis. Models for the role of AtCDC48 and SYP31 at the division plane will be discussed.  相似文献   

7.
Studies on the CDC6 protein, which is crucial to the control of DNA replication in yeast and animal cells, are lacking in plants. We have isolated an Arabidopsis cDNA encoding the AtCDC6 protein and studied its possible connection to the occurrence of developmentally regulated endoreplication cycles. The AtCDC6 gene is expressed maximally in early S-phase, and its promoter contains an E2F consensus site that mediates the binding of a plant E2F/DP complex. Transgenic plants carrying an AtCDC6 promoter-beta-glucuronidase fusion revealed that it is active in proliferating cells and, interestingly, in endoreplicating cells. In particular, the extra endoreplication cycle that occurs in dark-grown hypocotyl cells is associated with upregulation of the AtCDC6 gene. This was corroborated using ctr1 Arabidopsis mutants altered in their endoreplication pattern. The ectopic expression of AtCDC6 in transgenic plants induced endoreplication and produced a change in the somatic ploidy level. AtCDC6 was degraded in a ubiquitin- and proteosome-dependent manner by extracts from proliferating cells, but it was degraded poorly by extracts from dark-grown hypocotyl endoreplicating cells. Our results indicate that endoreplication is associated with expression of the AtCDC6 gene and, most likely, the stability of its product; it also apparently requires activation of the retinoblastoma/E2F/DP pathway. These conclusions may apply to endoreplicating cells in other tissues of the plant and to endoreplicating cells in other eukaryotes.  相似文献   

8.
p97/CDC48 is a highly abundant hexameric AAA-ATPase that functions as a molecular chaperone in numerous diverse cellular activities. We have identified an Arabidopsis UBX domain-containing protein, PUX1, which functions to regulate the oligomeric structure of the Arabidopsis homolog of p97/CDC48, AtCDC48, as well as mammalian p97. PUX1 is a soluble protein that co-fractionates with non-hexameric AtCDC48 and physically interacts with AtCDC48 in vivo. Binding of PUX1 to AtCDC48 is mediated through the UBX-containing C-terminal domain. However, disassembly of the chaperone is dependent upon the N-terminal domain of PUX1. These findings provide evidence that the assembly and disassembly of the hexameric p97/CDC48 complex is a dynamic process. This new unexpected level of regulation for p97/CDC48 was demonstrated to be critical in vivo as pux1 loss-of-function mutants display accelerated growth relative to wild-type plants. These results suggest a role for AtCDC48 and PUX1 in regulating plant growth.  相似文献   

9.
The evolutionary conserved protein Cdc48/VCP is involved in various cellular processes, such as protein degradation, membrane fusion and chaperone activity. Increased levels of Cdc48/VCP correlate with cancer, whereas Cdc48/VCP at endogenous levels has been proposed to be a pathological effector in protein deposition diseases. Upon mutation Cdc48/VCP triggers the multisystem disorder 'inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia' (IBMPFD). The roles of Cdc48/VCP under these diverse pathological conditions, especially its function in decreased and increased incidences of cell death underlying these diseases, are poorly understood. Mutation of yeast CDC48 (cdc48(S565G)) results in yeast cells demonstrating morphological markers of apoptotic cell death. In other species it has been confirmed that mutations and depletion of Cdc48/VCP cause apoptosis, whereas increased levels of this protein provide an anti-apoptotic effect. This review critically compares mechanisms of Cdc48/VCP-mediated apoptosis observed in yeast and other species. Cdc48/VCP plays a triple role in cell death. At first, loss-of-function of Cdc48/VCP due to mutation or depletion causes ER stress and oxidative stress, triggering apoptosis. Secondly, upon exogenously applied ER stress functional Cdc48/VCP is important in the processing of caspases and plays therewith a pro-apoptotic role. Finally, Cdc48/VCP protects cells from apoptosis through mediating and activating pro-survival signaling pathways, namely Akt and NFkappaB signaling. This complex role in cell death pathways could correspond with the various pathophysiological conditions Cdc48/VCP is involved in.  相似文献   

10.

Background

The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet. In Arabidopsis thaliana there are five CDC20 isoforms and here we aimed at defining their contribution to cell cycle regulation, substrate selectivity and plant development.

Methodology/Principal Findings

Studying the gene structure and phylogeny of plant CDC20s, the expression of the five AtCDC20 gene copies and their interactions with the APC/C subunit APC10, the CCS52 proteins, components of the mitotic checkpoint complex (MCC) and mitotic cyclin substrates, conserved CDC20 functions could be assigned for AtCDC20.1 and AtCDC20.2. The other three intron-less genes were silent and specific for Arabidopsis. We show that AtCDC20.1 and AtCDC20.2 are components of the MCC and interact with mitotic cyclins with unexpected specificity. AtCDC20.1 and AtCDC20.2 are expressed in meristems, organ primordia and AtCDC20.1 also in pollen grains and developing seeds. Knocking down both genes simultaneously by RNAi resulted in severe delay in plant development and male sterility. In these lines, the meristem size was reduced while the cell size and ploidy levels were unaffected indicating that the lower cell number and likely slowdown of the cell cycle are the cause of reduced plant growth.

Conclusions/Significance

The intron-containing CDC20 gene copies provide conserved and redundant functions for cell cycle progression in plants and are required for meristem maintenance, plant growth and male gametophyte formation. The Arabidopsis-specific intron-less genes are possibly “retrogenes” and have hitherto undefined functions or are pseudogenes.  相似文献   

11.
CDC48 is a highly conserved protein in eukaryotes and belongs to the AAA (ATPase associated with a variety of cellular activities) superfamily. It can interact with many different co-factors and form protein complexes that play important roles in various cellular processes. According to the Physcomitrella patens database, one member of the ATPases, the cell cycle gene PpCDC48II, was cloned. PpCDC48II contains two typical ATPase modules and is highly homologous to AtCDC48A. PpCDC48II was up-regulated in mRNA levels after incubation at 0°C for 36 and 72 h. To further elucidate protein function, we disrupted the PpCDC48II gene by transforming P. patens with the corresponding linear genomic sequences. When treated to the same freezing stress, it was found that PpCDC48II knockout plants were less resistant to freezing treatment than wild type after acclimation. This suggested that PpCDC48II was an essential gene for low-temperature-induced freezing tolerance in P. patens cells.  相似文献   

12.
13.
The ftsH gene is essential for cell viability in Escherichia coli. We cloned and sequenced the wild-type ftsH gene and the temperature-sensitive ftsH1(Ts) gene. It was suggested that FtsH protein was an integral membrane protein of 70.7 kDa (644 amino acid residues) with a putative ATP-binding domain. The ftsH1(Ts) gene was found to have two base substitutions within the coding sequence corresponding to the amino acid substitutions Glu-463 by Lys and Pro-587 by Ala. Homology search revealed that an approximately 200-amino-acid domain, including the putative ATP-binding sequence, is highly homologous (35 to 48% identical) to the domain found in members of a novel, eukaryotic family of putative ATPases, e.g., Sec18p, Pas1p, CDC48p, and TBP-1, which function in protein transport pathways, peroxisome assembly, cell division cycle, and gene expression, respectively. Possible implications of these observations are discussed.  相似文献   

14.
CELL DIVISION CONTROL PROTEIN48 (CDC48) is essential for membrane fusion, protein degradation, and other cellular processes. Here, we revealed the crucial role of CDC48B in regulating periclinal cell division in roots by analyzing the recessive gen1 mutant. We identified the GEN1 gene through map-based cloning and verified that GEN1 encodes CDC48B. gen1 showed severely inhibited root growth, increased periclinal cell division in the endodermis, defective middle cortex (MC) formation, and altered ground tissue patterning in roots. Consistent with these phenotypes, CYCLIND 6;1(CYCD6;1), a periclinal cell division marker, was upregulated in gen1 compared to Col-0. The ratio of SHRpro:SHR-GFP fluorescence in pre-dividing nuclei vs. the adjacent stele decreased by 33% in gen1, indicating that the trafficking of SHORT-ROOT (SHR) decreased in gen1 when endodermal cells started to divide. These findings suggest that the loss of function of CDC48B inhibits the intercellular trafficking of SHR from the stele to the endodermis, thereby decreasing SHR accumulation in the endodermis. These findings shed light on the crucial role of CDC48B in regulating periclinal cell division in roots.  相似文献   

15.
The yeast cell division cycle gene CDC6 was isolated by complementation of a temperature-sensitive cdc6 mutant with a genomic library. The amino acid sequence of the 48 kDalton CDC6 gene product, as deduced from DNA sequence data, includes the three consensus peptide motifs involved in guanine nucleotide binding and GTPase activity, a target site for cAMP-dependent protein kinase and a carboxy-terminal domain related to metallothionein sequences. A plasmid-encoded CDC6-beta-galactosidase hybrid protein was located at the plasma membrane by indirect immunofluorescence. Disruption experiments indicate that the CDC6 gene product is essential for mitotic growth.  相似文献   

16.
Cdc48p from Saccharomyces cerevisiae and its highly conserved mammalian homologue VCP (valosin-containing protein) are ATPases with essential functions in cell division and homotypic fusion of endoplasmic reticulum vesicles. Both are mainly attached to the endoplasmic reticulum, but relocalize in a cell cycle-dependent manner: Cdc48p enters the nucleus during late G1; VCP aggregates at the centrosome during mitosis. The nuclear import signal sequence of Cdc48p was localized near the amino terminus and its function demonstrated by mutagenesis. The nuclear import is regulated by a cell cycle-dependent phosphorylation of a tyrosine residue near the carboxy terminus. Two-hybrid studies indicate that the phosphorylation results in a conformational change of the protein, exposing the nuclear import signal sequence previously masked by a stretch of acidic residues.  相似文献   

17.
CDC48/p97 is an essential AAA-ATPase chaperone that functions in numerous diverse cellular activities through its interaction with specific adapter proteins. The ubiquitin regulatory X (UBX)-containing protein, PUX1, functions to regulate the hexameric structure and ATPase activity of AtCDC48. To characterize the biochemical mechanism of PUX1 action on AtCDC48, we have defined domains of both PUX1 and AtCDC48 that are critical for interaction and oligomer disassembly. Binding of PUX1 to AtCDC48 was mediated through a region containing both the UBX domain and the immediate C-terminal flanking amino acids (UBX-C). Like other UBX domains, the primary binding site for the UBX-C of PUX1 is the N(a) domain of AtCDC48. Alternative plant PUX protein UBX domains also bind AtCDC48 through the N terminus but were found not to be able to substitute for the action imparted by the UBX-C of PUX1 in hexamer disassembly, suggesting unique features for the UBX-C of PUX1. We propose that the PUX1 UBX-C domain modulates a second binding site on AtCDC48 required for the N-terminal domain of PUX1 to interact with and promote dissociation of the AtCDC48 hexamer. Utilizing Atcdc48 ATP hydrolysis and binding mutants, we demonstrate that PUX1 binding was not affected but that hexamer disassembly was significantly influenced by the ATP status of AtCDC48. ATPase activity in both the D1 and the D2 domains was critical for PUX1-mediated AtCDC48 hexamer disassembly. Together these results provide new mechanistic insight into how the hexameric status and ATPase activity of AtCDC48 are modulated.  相似文献   

18.
The human band 4.1-related protein-tyrosine phosphatase PTPH1 was introduced into NIH3T3 cells under the control of a tetracycline-repressible promoter. Ectopic expression of wild type PTPH1 dramatically inhibited cell growth, whereas a catalytically impaired mutant showed no effect. To identify the direct target of PTPH1 in the cell, we generated a substrate-trapping mutant, in which an invariant aspartate residue was changed to alanine (D811A in PTPH1). The PTPH1-D811A mutant trapped primarily a 97-kDa tyrosine-phosphorylated protein, which was determined to be VCP (also named p97 or yeast CDC48), from various cell lysates in vitro. However, when expressed in mammalian cells, the D811A mutant was observed to contain high levels of phosphotyrosine and did not trap substrates. Mutation of tyrosine 676 to phenylalanine (Y676F) in the PTPH1-D811A mutant led to a marked reduction in phosphotyrosine content. Furthermore, this double mutant specifically trapped VCP in vivo and recognized the C-terminal tyrosines of VCP, whose phosphorylation is important for cell cycle progression in yeast. Like wild type PTPH1, this double mutant also inhibited cell proliferation. Moreover, induction of wild type PTPH1 resulted in specific dephosphorylation of VCP without changing the overall phosphotyrosine profile of the cells. VCP has been implicated in control of a variety of membrane functions, including membrane fusions, and is a regulator of the cell cycle. Our results suggest that PTPH1 may exert its effects on cell growth through dephosphorylation of VCP, thus implicating tyrosine phosphorylation as an important regulator of VCP function.  相似文献   

19.
The Anaphase Promoting Complex (APC) controls CDK activity by targeting the ubiquitin-dependent proteolysis of S-phase and mitosis-promoting cyclins. Here, we report that the ectopic expression of the Arabidopsis CDC27a, an APC subunit, accelerates plant growth and results in plants with increased biomass production. CDC27a overexpression was associated to apical meristem restructuration, protoplasts with higher 3H-thimidine incorporation and altered cell-cycle marker expression. Total protein extracts immunoprecipitated with a CDC27a antibody showed ubiquitin ligase activity, indicating that the Arabidopsis CDC27a gets incorporated into APC complexes. These results indicate a role of AtCDC27a in regulation of plant growth and raise the possibility that the activity of the APC and the rates of plant cell division could be regulated by the concentration of the CDC27a subunit. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Cristian Antonio Rojas and Nubia Barbosa Eloy contributed equally to this work.  相似文献   

20.
Mutation in CDC48 (cdc48(S565G)), a gene essential in the endo-plasmic reticulum (ER)-associated protein degradation (ERAD) pathway, led to the discovery of apoptosis as a mechanism of cell death in the unicellular organism Saccharomyces cerevisiae. Elucidating Cdc48p-mediated apoptosis in yeast is of particular interest, because Cdc48p is the highly conserved yeast orthologue of human valosin-containing protein (VCP), a pathological effector for polyglutamine disorders and myopathies. Here we show distinct proteomic alterations in mitochondria in the cdc48(S565G) yeast strain. These observed molecular alterations can be related to functional impairment of these organelles as suggested by respiratory deficiency of cdc48(S565G) cells. Mitochondrial dysfunction in the cdc48(S565G) strain is accompanied by structural damage of mitochondria indicated by the accumulation of cytochrome c in the cytosol and mitochondrial enlargement. We demonstrate accumulation of reactive oxygen species produced predominantly by the cytochrome bc1 complex of the mitochondrial respiratory chain as suggested by the use of inhibitors of this complex. Concomitantly, emergence of caspase-like enzymatic activity occurs suggesting a role for caspases in the cell death process. These data strongly point for the first time to a mitochondrial involvement in Cdc48p/VCP-dependent apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号