首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flagellar beating of hyperactivated golden hamster spermatozoa was analyzed in detail using digital image analysis and was compared to that of nonhyperactivated (activated) spermatozoa in order to understand the change in flagellar beating during hyperactivation and the active microtubule sliding that brought about the change in flagellar beating. Hyperactivated flagellar beating, which was characterized by a sharp bend in the proximal midpiece and low beat frequency, was able to alter the waveform with little change in beat frequency (constant-frequency beating), whereas activated flagellar beating, which was characterized by a slight bend in the proximal midpiece and high beat frequency, was able to alter beat frequency with little change in the waveform (constant-curvature beating). These results demonstrate that flagellar beating of hyperactivated and activated spermatozoa were essentially different modes and that hyperactivation was the mode conversion from constant-curvature beating to constant-frequency beating. Detailed analysis of flagellar bends revealed that the increase in curvature in the proximal midpiece during hyperactivation was due to the increase in total length of microtubule sliding in a nearly straight region between bends, while the rate of microtubule sliding remained almost constant.  相似文献   

2.
The movement parameters of a sea urchin sperm flagellum can be manipulated mechanically by applying various modes of periodic vibrations to the sperm head held by suction in the tip of a micropipette. The beat frequency of the flagellum readily synchronizes with the frequency of the externally imposed lateral vibration, and the plane of flagellar bending waves adapts itself to the plane of the pipette vibration (Gibbons et al., J. Cell Biol. 101:270a, 1985; Nature 325: 351-352, 1987). In this study, we observed the particular effects of external asymmetric forces on flagellar beating parameters by vibrating the micropipette holding the sperm head in a transverse sawtooth-like motion composed of a rapid effective stroke and a slower recovery stroke, while keeping the vibration frequency constant. The results demonstrate that the timing of bend initiation within the flagellar beat cycle can be controlled mechanically by changing the time point within the vibration cycle at which the micropipette changes its direction of motion. A switch in the sidedness of the asymmetric movement of the micropipette produces dramatic changes in the profiles of bend growth in the basal 5 microns of the flagellum but has almost no effect on the asymmetry or other parameters of bending in the mid- and distal regions of the flagellum. Our results suggest that elastic strain within the basal region of the flagellar structure may play a more significant role in the process of bend initiation than has been realized heretofore.  相似文献   

3.
In order to understand the working mechanism that governs the flagellar beat it is essential to know if the axoneme undergoes distortion during the course of the beat cycle. The rapid fixation method employed by Mitchell was able to preserve the waveform of Chlamydomonas flagella much as it appears during normal flagellar beating [Mitchell, Cell Motil Cytoskeleton 2003;56:120-129]. This conservation of the waveform suggests that the stress responsible for the production of bending is also trapped by the fixation procedure. Longitudinal sections of these well-preserved flagella were used to document variations in the relative axonemal diameter. Sections aligned to the plane of bending, showing both the central pair microtubules and outer doublets, were examined for this purpose. Micrographs were selected that continuously showed both the outer doublets and the central pair from a straight region to a curved region of the flagellum. Axoneme diameters measured from these select micrographs showed an increase in relative diameter that averaged 39 nm greater at the crest of the bent region. This constituted a 24% increase in the axoneme diameter in the bends. The transverse stress acting across the axoneme during bending was calculated from the Geometric Clutch computer model for a simulated Chlamydomonas-like flagellar beat. If we assume that this is representative of the transverse stress acting in a real flagellum, then the Young's modulus of the intact axoneme is approximately 0.02 MPa. The possibility that the distortion of the axoneme during the beat could play a significant role in regulating dynein function is discussed.  相似文献   

4.
Flagellar movement of human spermatozoa held by their heads with a micropipette was recorded by means of a video-strobe system. Spermatozoa were studied in normal Hanks' solution, Hanks' solution with increased viscosity, cervical mucus, and hyaluronic acid. When flagellar movement in normal Hanks' solution was observed from the direction parallel to the beating plane, segments of the flagellum in focus did not lie on a straight line but on two diverging dashed lines. The distance between the two dashed lines was about 20% of the bend amplitude in the major beating plane. These observations indicate that flagellar beating of human spermatozoa in normal Hanks' solution is not planar. In contrast, segments of the flagellum in focus lay on a straight line when the spermatozoa were observed in Hanks' solution with increased viscosity, cervical mucus, or hyaluronic acid. In normal Hanks' solution, free swimming spermatozoa rotated constantly around their longitudinal axes with a frequency similar to the beat frequency, whereas little or no rotation of spermatozoa occurred in Hanks' solution with increased viscosity, in cervical mucus, or in hyaluronic acid. We conclude that human spermatozoa in normal Hanks' solution beat with a conical helical waveform having an elliptical cross section, the semiaxes of which have a ratio of 0.2. The three-dimensional geometry of the flagellar movement is responsible for the rotation of the sperm around their longitudinal axes.  相似文献   

5.
It is now well understood that ATP-driven active sliding between the doublet microtubules in the sperm axoneme generates flagellar movement. However, much remains to be learned about how this movement is controlled. Detailed analyses of the flagellar beating of the mammalian spermatozoa revealed that there were two beating modes at a constant rate of microtubule sliding: that is, a nearly constant-curvature beating in nonhyperactivated spermatozoa and a nearly constant-frequency beating in hyperactivated spermatozoa. The constant rate of microtubule sliding suggests that the beat frequency and waveform of the flagellar beating are dependently regulated. Comparison of the sliding velocity of several mammalian and sea urchin sperm flagella with their mechanical property clarified that the sliding velocity of the microtubule was determined by the stiffness of the flagellum at its base, and that its relationship was expressed by a logarithmic equation that is similar to the classical force-velocity equation of the muscle contraction. Data from sea urchin spermatozoa also satisfied the equation, suggesting that the same microtubule sliding system functions in both the mammalian and echinoderm spermatozoa.  相似文献   

6.
Most flagellates with hispid flagella, that is, flagella with rigid filamentous hairs (mastigonemes), swim in the direction of the flagellar wave propagation with an anterior position of the flagellum. Previous analysis was based on planar wave propagation showing that the mastigonemes pull fluid along the flagellar axis. In the present study, we investigate the flagellar motions and swimming patterns for two flagellates with hispid flagella: Paraphysomonas vestita and Pteridomonas danica. Studies were carried out using normal and high-speed video recording, and particles were added to visualize flow around cells generating feeding currents. When swimming or generating flow, P. vestita was able to pull fluid normal to, and not just along, the flagellum, implying the use of the mastigonemes in an as yet un-described way. When the flagellum made contact with food particles, it changed the flagellar waveform so that the particle was fanned towards the ingestion area, suggesting mechano-sensitivity of the mastigonemes. Pteridomonas danica was capable of more complex swimming than previously described for flagellated protists. This was associated with control of the flagellar beat as well as an ability to bend the plane of the flagellar waveform.  相似文献   

7.
Flagellar and ciliary beating in trypanosome motility   总被引:1,自引:0,他引:1  
The single flagellum of Leishmania and Trypanosoma parasites is becoming an increasingly attractive model for the analysis of flagellar function-driven largely by the abundance of genomic and proteomic information available for the organelle, the genetic manipulability of the organisms and the importance of motility for the parasite lifecycle. However, as yet, there is a paucity of published data on the beating of any genetically malleable trypanosomatid species. Here we undertook an in-depth analysis using high-speed videomicroscopy of the beating of free-swimming Leishmania major cells in comparison to Crithidia species (for which there is some existing literature). In so doing, we describe a simple and generally-applicable technique to facilitate the quantitative analysis of free-swimming cells. Our analysis thoroughly defines the parameters of the expected tip-to-base symmetrical flagellar beat in these species. It also describes beat initiation from points other than the flagellum tip and a completely different, base-to-tip highly-asymmetric beat that represents a ciliary beat of trypanosomatid flagella. Moreover, detailed analysis of parameter interrelationships revealed an unexpected dependency of wavelength on oscillator length that may be the result of reversible constraint of doublet sliding at the tip or resonance of the flagellar beat.  相似文献   

8.
The effects of rapid pH drop on the flagellar movement of reactivated sea urchin sperm were studied by video microscopy and by a newly developed pH jump method. Triton-demembranated sperm were reactivated in a thin layer of the reactivation medium containing ATP and potassium acetate and supported by a ring-shaped Millipore filter stuck to the lower surface of a supported coverslip. The pH of the medium was lowered rapidly by dissolving acetic acid vapor abruptly introduced into a gap between the cover and slide. Flagellar beating ceased immediately when the pH of the reactivation medium was lowered. At least two types of cessation were distinguished: 1) "instantaneous" cessation in a bent form closely resembling those characteristic of steady-state beating before pH drop (waveform freeze), and 2) flagellar quiescence in a cane-shaped form resembling those characteristic of Ca-induced quiescence (cane-shaped quiescence). The flagellum again began beating if the pH was raised to normal but eventually was disintegrated by tubule sliding if the pH was left lowered. Field-by-field analysis of the transient movement of flagella becoming quiescent upon pH drop demonstrated that the proximal bend of the cane-shaped form corresponded to the principal bend of the steady-state beating in some flagella, but in others, to the reverse bend. These observations indicate that low pHs affect flagellar beating by interfering with sliding-bending conversion by a mechanism different from that previously reported.  相似文献   

9.
Background information. The spermatozoon of the quail (Coturnix coturnix L., var japonica) has a ‘9+2’ flagellum that is unusually long. When it moves in a viscous medium, near to the coverslip, it develops a meander waveform. Because of the high viscosity, the meander bends are static in relation to the field of view; bend propagation is therefore manifest as the forward movement of the flagellum through the meander shape. At the same time, the origin of the oscillation typically shifts proximally in a stepwise fashion. These movements have been analysed in the hope of contributing to the resolution of problems in flagellar mechanics. Results. (1) Meander waves originate from spontaneous sigmoid bend complexes. (2) On a given flagellum, fully developed meander bends are uniform in their large angle, curvature and propagation speed; interbends can vary in length and shape. (3) No intra‐axonemal sliding is transmitted through formed bends; sliding related to new bends is accommodated proximally. (4) Sliding reversal is initiated at a threshold shear angle of approx. 1 rad. (5) The arc wavespeed is the product of the arc wavelength and the beat frequency. (6) Physical obstruction to bend development causes a pause in the oscillation. (7) New bend initiation can thus be dissociated from bend propagation on the distal flagellum. (8) The steps in the forward advance of the oscillation site occur during the early phase of bend growth. Conclusions. (1) The main conclusion is that, in meander waves, the mechanical basis of the oscillation appears to be that the propulsive thrust arising from bend propagation acts as a bending stress to trigger sliding reversal, thus perpetuating the rhythmic beating. (2) Oscillations can originate at any position, provided the position is distal to a location where doublet sliding is restrained. (3) Meander waves are an example of new bend development without ‘paradoxical’ classes of sliding.  相似文献   

10.
Calcium-induced quiescence in reactivated sea urchin sperm   总被引:20,自引:17,他引:3       下载免费PDF全文
Sperm flagella of the sea urchin Tripneustes gratilla beat with asymmetrical bending waves after demembranation with Triton X-100 in the presence of EGTA and reactivation at pH 8.1 with 1 mM ATP in the presence of 2 mM MgSO4. Addition of 0.1--0.2 mM free Ca2+ to these reactivated sperm induces 70--95% of them to become quiescent. This quiescence can be reversed by reduction of the free Ca2% concentration with EGTA, or by dilution to reduce the MgATP2- concentration below 0.3 mM. The quiescent waveform is characterized by a sharp principal bend of approximately 5.6 rad in the proximal region of the flagellum, a slight reverse bend in the midregion that averages approximately 0.3 rad, and a principal bend of approximately 1.1 rad in the tip. The quiescent sperm are highly fragile mechanically, and disruption, including microtubule sliding, occurs spontaneously at a slow rate upon standing or immediately upon gentle agitation. Mild digestion by trypsin causes a gradual appearance of normal, symmetrical flagellar beating. Addition of increasing concentrations of vanadate to quiescent sperm causes a graded decrease in the proximal bend angle, with 50 micrometers vanadate reducing it to approximately 2.6 rad. In the presence of 0.1 mM free Ca2% and 10 micrometers vanadate, a characteristic, crescented stationary bend is induced in the demembranated sperm, without intermediate oscillatory beating, by the addition of either 0.1 or 1 mM ATP. In the absence of vanadate, these two concentrations of ATP produce asymmetric beating and quiescence, respectively. The results support the hypothesis that quiescence in live sperm is induced by an elevated concentration of intracellular Ca2%. In addition, they demonstrate that bending can occur in flagella in which oscillatory beating is inhibited and emphasize the close relationship between asymmetric beating and quiescence.  相似文献   

11.
The motility of cilia and flagella is driven by thousands of dynein motors that hydrolyze adenosine triphosphate (ATP). Despite decades of genetic, biochemical, structural, and biophysical studies, some aspects of ciliary motility remain elusive, such as the regulation of beating patterns and the energetic efficiency of these nanomachines. In this study, we introduce an experimental method to measure ATP consumption of actively beating axonemes on a single-cell level. We encapsulated individual sea urchin sperm with demembranated flagellum inside water-in-oil emulsion droplets and measured the axoneme’s ATP consumption by monitoring fluorescence intensity of a fluorophore-coupled reporter system for ATP turnover in the droplet. Concomitant phase contrast imaging allowed us to extract a linear dependence between the ATP consumption rate and the flagellar beating frequency, with ∼2.3 × 105 ATP molecules consumed per beat of a demembranated flagellum. Increasing the viscosity of the aqueous medium led to modified beating waveforms of the axonemes and to higher energy consumption per beat cycle. Our single-cell experimental platform provides both new insights, to our knowledge, into the beating mechanism of flagella and a powerful tool for future studies.  相似文献   

12.
Ohmuro J  Mogami Y  Baba SA 《Zoological science》2004,21(11):1099-1108
Transition from immotile to motile flagella may involve a series of states, in which some of regulatory mechanisms underlying normal flagellar movement are working with others being still suppressed. To address ourselves to the study of starting transients of flagella, we analyzed flagellar movement of sea urchin sperm whose motility initiation had been retarded in an experimental solution, so that we could capture the instance at which individual spermatozoa began their flagellar beating. Initially straight and immotile flagella began to shiver at low amplitude, then propagated exclusively the principal bend (P bend), and finally started stable flagellar beating. The site of generation of the P bend in the P-bend propagating stage varied in position in the basal region up to 10 microm from the base, indicating that the ability of autonomous bend generation is not exclusively possessed by the very basal region but can be unmasked throughout a wider region when the reverse bend (R bend) is suppressed. The rate of change in the shear angle, the curvature of the R bend and the frequency and regularity of beating substantially increased upon transition from P-bend propagating to full-beating, while the propagation velocity of bends remained unchanged. These findings indicate that artificially delayed motility initiation may accompany sequential modification of the motile system and that mechanisms underlying flagellar motility can be analyzed separately under experimentally retarded conditions.  相似文献   

13.
The central tenet of the Geometric Clutch hypothesis of flagellar beating is that the internal force transverse to the outer doublets (t-force) mediates the initiation and termination of episodes of dynein engagement. Therefore, if the development of an adequate t-force is prevented, then the dynein-switching necessary to complete a cycle of beating should fail. The dominant component of the t-force is the product of the longitudinal force on each outer doublet multiplied by the local curvature of the flagellum. In the present study, two separate strategies, blocking and clipping, were employed to limit the development of the t-force in Triton X-100 extracted bull sperm models. The blocking strategy used a bent glass microprobe to restrict the flagellum during a beat, preventing the development of curvature in the basal portion of the flagellum. The clipping strategy was designed to shorten the flagellum by clipping off distal segments of the flagellum with a glass microprobe. This limits the number of dyneins that can contribute to bending and consequently reduces the longitudinal force on the doublets. The blocking and clipping strategies both produced an arrest of the beat cycle consistent with predictions based on the Geometric Clutch hypothesis. Direct comparison of experimentally produced arrest behavior to the behavior of the Geometric Clutch computer model of a bull sperm yielded similar arrest patterns. The computer model duplicated the observed behavior using reasonable values for dynein force and flagellar stiffness. The experimental data derived from both blocking and clipping experiments are fully compatible with the Geometric Clutch hypothesis.  相似文献   

14.
It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements.  相似文献   

15.
A basic feature of the movement of eukaryotic flagella is oscillation. Although flagellar oscillation is thought to be regulated by a self-regulatory feedback system including the mechanical signal of bending itself, the mechanism regulating the dynein motile activity to produce oscillation is not well understood. To elucidate the mechanism, we developed a new experimental system which allowed us to analyze the conditions necessary for the induction of oscillation. When a mechanical signal of bending or a pulse was applied by micromanipulation to a demembranated motionless sea urchin sperm flagellar axoneme at very low ATP concentrations (1-3 microM), a localized pair of bends was induced. The bend formation was often followed by further responses including propagation of the distal bend of paired bends, growth and propagation of the paired bends, and cyclical beating. The beating was induced at 2.0 microM or higher concentrations of ATP, but appeared even at 1.5 microM ATP if a few muM of ADP was also present. When the proximal half of a flagellum was attached to a microneedle, beating could not be induced in the distal free region at 2 microM ATP. These results suggest that mechanical signal is involved in the mechanism regulating the motile activity of dynein to produce oscillation. Our results also showed that the presence of a small amount of ADP and the axial difference along the flagellum are factors essential for the induction of flagellar oscillation.  相似文献   

16.
Flagellar-mediated motility is an indispensable function for cell types as evolutionarily distant as mammalian sperm and kinetoplastid parasites, a large group of flagellated protozoa that includes several important human pathogens. Despite the obvious importance of flagellar motility, little is known about the signalling processes that direct the frequency and wave shape of the flagellar beat, or those that provide the motile cell with the necessary environmental cues that enable it to aim its movement. Similarly, the energetics of the flagellar beat and the problem of a sufficient ATP supply along the entire length of the beating flagellum remain to be explored. Recent proteome projects studying the flagella of mammalian sperm and kinetoplastid parasites have provided important information and have indicated a surprising degree of similarities between the flagella of these two cell types.  相似文献   

17.
The sperm of the freshwater clam Corbicula fluminea are unusual in that they have two flagella, both of which are capable of beating. When Corbicula sperm are removed from the gonad and placed into freshwater, most remain immotile. Video microscopy was used to assess signaling molecules capable of activating Corbicula sperm motility. Experiments using the cAMP analogs dbcAMP or 8-Br-cAMP show that elevating cAMP activates flagellar motility. Treatments with 8-Br-cGMP activated motility in similar numbers of sperm. Treatments with the selective cAMP-dependent protein kinase (PKA) inhibitor H-89 block activation by 8-Br-cAMP but not by 8-Br-cGMP. Similar treatments with the cGMP-dependent protein kinase (PKG) inhibitor Rp-8-pCPT-cGMPS block activation by 8-Br-cGMP but not by 8-Br-cAMP. These results suggest that cAMP and cGMP each work through their specific kinase to activate flagellar motility. Analysis of spontaneously activated freely swimming sperm shows that the two flagella beat with different parameters. The A flagellum beats with a shorter wavelength and a higher frequency than the B flagellum. The observed differences in flagellar waveform indicate that the flagella are differentially controlled.  相似文献   

18.
Motility in the protozoan parasite Trypanosoma brucei is conferred by a single flagellum, attached alongside the cell, which moves the cell forward using a beat that is generated from tip-to-base. We are interested in characterizing components that regulate flagellar beating, in this study we extend the characterization of TbIC138, the ortholog of a dynein intermediate chain that regulates axonemal inner arm dynein f/I1. TbIC138 was tagged In situ-and shown to fractionate with the inner arm components of the flagellum. RNAi knockdown of TbIC138 resulted in significantly reduced protein levels, mild growth defect and significant motility defects. These cells tended to cluster, exhibited slow and abnormal motility and some cells had partially or fully detached flagella. Slight but significant increases were observed in the incidence of mis-localized or missing kinetoplasts. To document development of the TbIC138 knockdown phenotype over time, we performed a detailed analysis of flagellar detachment and motility changes over 108 hours following induction of RNAi. Abnormal motility, such as slow twitching or irregular beating, was observed early, and became progressively more severe such that by 72 hours-post-induction, approximately 80% of the cells were immotile. Progressively more cells exhibited flagellar detachment over time, but this phenotype was not as prevalent as immotility, affecting less than 60% of the population. Detached flagella had abnormal beating, but abnormal beating was also observed in cells with no flagellar detachment, suggesting that TbIC138 has a direct, or primary, effect on the flagellar beat, whereas detachment is a secondary phenotype of TbIC138 knockdown. Our results are consistent with the role of TbIC138 as a regulator of motility, and has a phenotype amenable to more extensive structure-function analyses to further elucidate its role in the control of flagellar beat in T. brucei.  相似文献   

19.
The Chlamydomonas mutant vfl-3 lacks normal striated fibers and microtubular rootlets. Although the flagella beat vigorously, the cells rarely display effective forward swimming. High speed cinephotomicrography reveals that flagellar waveform, frequency, and beat synchrony are similar to those of wild-type cells, indicating that neither striated fibers nor microtubular rootlets are required for initiation or synchronization of flagellar motion. However, in contrast to wild type, the effective strokes of the flagella of vfl-3 may occur in virtually any direction. Although the direction of beat varies between cells, it was not observed to vary for a given flagellum during periods of filming lasting up to several thousand beat cycles, indicating that the flagella are not free to rotate in the mature cell. Structural polarity markers in the proximal portion of each flagellum show that the flagella of the mutant have an altered rotational orientation consistent with their altered direction of beat. This implies that the variable direction of beat is not due to a defect in the intrinsic polarity of the axoneme, and that in wild-type cells the striated fibers and/or associated structures are important in establishing or maintaining the correct rotational orientation of the basal bodies to ensure that the inherent functional polarity of the flagellum results in effective cellular movement. As in wild type, the flagella of vfl-3 coordinately switch to a symmetrical, flagellar-type waveform during the shock response (induced by a sudden increase in illumination), indicating that the striated fibers are not directly involved in this process.  相似文献   

20.
The force generated by a detergent-extracted reactivated bull sperm flagellum during an isometric stall was measured with a force-calibrated glass microprobe. The average isometric stall force from 48 individual measurements was 2.5 +/- 0.7 x 10(-5) dyne (2.5 +/- 0.7 x 10(-10) N). The force measurements were obtained by positioning a calibrated microprobe in the beat path of sperm cells that were stuck by their heads to a glass microscope slide. The average position of the contact point of the flagellum with the probe was 15 microm from the head-tail junction. This average lever arm length multiplied by the measured force yields an estimate of the active bending moment (torque) of 3.9 x 10(-8) dyne x cm (3.9 x 10(-15) N x m). The force was sustained and was for the most part uniform, despite the fact that the flagellum beyond the point of contact with the probe usually continued beating. It appears that the dynein motors in the basal portion of the flagellum continue to pull in an isometric stall for as long as the motion of the flagellum is blocked. If dynein motors in the flagellum distal to the contact point with the probe were contributing force to the displacement of the probe, then the flagellar segment immediately past the point of contact would have to show a net curvature in the direction of the probe displacement. No such curvature bias was observed in the R-bend arrests, and only a small positive curvature bias was measured in the P-bend arrests. Our analysis of the data suggests that more than 90% of the sustained force component is generated by the part of the flagellum between the probe and the flagellar base. Based on this premise, the isometric stall force per dynein head is estimated to be 5.0 x 10(-7) dyne (5 pN). This equals approximately 1.0 x 10(-6) dyne (10 pN) per intact dynein arm. These values are close to the isometric stall force of isolated dynein. This suggests that all of the dynein heads between the base and the probe, on the active side of the axoneme, are contributing to the force exerted against the probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号