首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the identification of a mouse kidney epithelial cell line (K435) in which G:C-->C:G transversion mutations occur at an elevated rate and are the predominant spontaneous events observed at the selectable Aprt locus. Of three genotoxins tested, ultraviolet radiation (UV), ionizing radiation, and hydrogen peroxide, only UV exposure was able to alter the spectrum of small mutational events. To determine if the G:C-->C:G mutator phenotype was due to a deficiency in the mismatch repair pathway, the K435 cells were tested for resistance to 6-thioguanine, cisplatin, and MNNG. Although the K435 cells were as resistant to 6-thioguanine and cisplatin as Pms2 and Mlh1 null kidney cells, they were hypersensitive to MNNG. Moreover, the K435 cells do not exhibit microsatellite instability, a hallmark of mismatch repair deficiency. These results suggest that a novel mechanism, which does not include a classical deficiency in mismatch repair, accounts for the G:C-->C:G mutator phenotype.  相似文献   

2.
DNA mismatch repair (MMR) is important for preventing base-pair substitutions caused by spontaneous or damage-related DNA polymerase errors. We have used a reversion assay based on mouse Aprt to investigate the role of MMR in preventing ultraviolet radiation (UV) and oxidative stress induced tandem CC --> TT base pair substitutions in cultured mammalian cells. The reversion construct used for this assay can detect both C --> T and CC --> TT mutational events. Most spontaneous mutations in Pms2-deficient cells were single C --> T substitutions (88%), with the remainder being tandem CC --> TT substitutions (12%). The percentage of tandem CC --> TT substitutions rose to 64% and 94% for Pms2-deficient cells exposed to UV and a mixture of hydrogen peroxide and metals (Cu/Fe), respectively. Exposure to hydrogen peroxide alone or metals alone did not induce the tandem substitutions, nor did treatment of the cells with the alkylating agent ethylmethane sulfonate, which induces G --> A substitutions on the opposite strand. Tandem CC --> TT substitutions were also induced by UV irradiation and the hydrogen peroxide/metal mixture in Pms2-proficient cells, but at frequencies significantly lower than those observed in the Pms2-deficient cells. We conclude that mismatch repair plays an important role in preventing tandem CC --> TT substitutions induced by certain genotoxin exposures.  相似文献   

3.
The crystal structures of five double helical DNA fragments containing non-Watson-Crick complementary base pairs are reviewed. They comprise four fragments containing G.T base pairs: two deoxyoctamers d(GGGGCTCC) and d(GGGGTCCC) which crystallise as A type helices; a deoxydodecamer d(CGCGAATTTGCG) which crystallises in the B-DNA conformation; and the deoxyhexamer d(TGCGCG), which crystallises as a Z-DNA helix. In all four duplexes the G and T bases form wobble base pairs, with bases in the major tautomer forms and hydrogen bonds linking N1 of G with O2 of T and O6 of G with N3 of T. The X-ray analyses establish that the G.T wobble base pair can be accommodated in the A, B or Z double helix with minimal distortion of the global conformation. There are, however, changes in base stacking in the neighbourhood of the mismatched bases. The fifth structure, d(CGCGAATTAGCG), contains the purine purine mismatch G.A where G is in the anti and A in the syn conformation. The results represent the first direct structure determinations of base pair mismatches in DNA fragments and are discussed in relation to the fidelity of replication and mismatch recognition.  相似文献   

4.
The high frequency of G-->T transversions in the p53 gene is a distinctive feature of lung cancer patients with a smoking history and is commonly believed to reflect the direct mutagenic signature of polycyclic aromatic hydrocarbon (PAH) adducts along the gene. Using the April 2000 update of the p53 mutation database of the International Agency for Research on Cancer together with the primary literature, we confirm that the frequency of p53 G-->T transversions in lung cancer of smokers is about three times higher than their frequency in lung cancer of nonsmokers and in most other smoke-unrelated cancers. In contrast, the frequency of C-->A transversions, the DNA-strand mirror counterpart of G-->T transversions, appears to be similar in virtually all human cancers. Along with other data, this strand bias leads us to suggest that smoking may inhibit repair of G-->T primary lesions on the non-transcribed strand. As to the origin of G-->T primary lesions in the p53 gene, we unexpectedly found that cell lines derived from lung cancers, but not from other cancers, demonstrate significant additional excess of G-->T transversions when compared to p53 mutations in parent primary tumors. A detailed codon-by-codon comparison provides evidence in favor of the in vitro origin of this culture-associated G-->T augmentation. Since in culture lung cancer cell lines are not exposed to the carcinogens from smoke, one would rather ascribe these new G-->T transversions to some other mutagens such as, for example, reactive oxygen and nitrogen species. These results are consistent with our previous report [Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 12244], and suggest that other factors, in addition to the direct mutagenic action of PAH-like carcinogens, contribute to p53 mutation-associated lung malignancy.  相似文献   

5.
We previously reported that the majority of base-pair substitutions induced by an endogenous mutagen, methylglyoxal, were G:C-->T:A transversions and G:C-->A:T transitions in wild-type and nucleotide excision repair (NER)-deficient (uvrA or uvrC) Escherichia coli strains. To investigate the mutation spectrum of methylglyoxal in mammalian cells and to compare the spectrum with those detected in other experimental systems, we analyzed mutations in a bacterial suppressor tRNA (supF) gene in the shuttle vector plasmid pMY189. We treated pMY189 with methylglyoxal and immediately transfected it into simian COS-7 cells. The cytotoxicity and the mutation frequency (MF) increased according to the dose of methylglyoxal. In the mutants induced by methylglyoxal, multi-base deletions were predominant (50%), followed by base-pair substitutions (35%), in which 89% of the substitutions occurred at G:C sites. Among them, G:C-->C:G and G:C-->T:A transversions were predominant. The overall distribution of methylglyoxal-induced mutations detected in the supF gene was different from that for the spontaneous mutations. These results suggest that methylglyoxal may take part in causing G:C-->C:G and G:C-->T:A transversions in vivo.  相似文献   

6.
The coexistence effects of multiple kinds of oxidized deoxyribonucleotides were examined using an SV40 origin-dependent in vitro replication system with a HeLa extract. Oxidized dGTP and dATP, 8-hydroxy-2'-deoxyguanosine 5'-triphosphate (8-OH-dGTP) and 2-hydroxy-2'-deoxyadenosine 5'-triphosphate (2-OH-dATP), were used in this study. The mutation frequency synergistically increased when the two oxidized deoxyribonucleotides were together in the reaction. 2-OH-dATP enhanced the mutagenicity of 8-OH-dGTP, since the induced mutations were A.T --> C.G transversions. The contribution of the highly error-prone DNA polymerase eta was unlikely, since similar results were observed with an XP-V cell extract. The possible involvement of 2-hydroxyadenine in the complementary (template) strand was excluded on the basis of experiments using plasmids containing 2-hydroxyadenine as templates in the reactions with 8-OH-dGTP. 2-OH-dATP suppressed hydrolysis of 8-OH-dGTP, suggesting that the inhibition of the MTH1 protein played the major role in the enhancement. These results highlight the importance of specific hydrolysis of 8-OH-dGTP for the suppression of its induced mutation.  相似文献   

7.
Schmegner C  Hoegel J  Vogel W  Assum G 《Genetics》2007,175(1):421-428
The human genome is composed of long stretches of DNA with distinct GC contents, called isochores or GC-content domains. A boundary between two GC-content domains in the human NF1 gene region is also a boundary between domains of early- and late-replicating sequences and of regions with high and low recombination frequencies. The perfect conservation of the GC-content distribution in this region between human and mouse demonstrates that GC-content stabilizing forces must act regionally on a fine scale at this locus. To further elucidate the nature of these forces, we report here on the spectrum of human SNPs and base pair substitutions between human and chimpanzee. The results show that the mutation rate changes exactly at the GC-content transition zone from low values in the GC-poor sequences to high values in GC-rich ones. The GC content of the GC-poor sequences can be explained by a bias in favor of GC > AT mutations, whereas the GC content of the GC-rich segment may result from a fixation bias in favor of AT > GC substitutions. This fixation bias may be explained by direct selection by the GC content or by biased gene conversion.  相似文献   

8.
We have identified eight independent transversions at CpG in 290 consecutive families with hemophilia B. These eight transversions account for 16.3% of all independent transversions in our sample, yet the expected frequency of CpG transversions at random in the factor IX gene is only 2.6% (P < .01). The aggregate data suggest that the two types of CpG transversions (G:C-->T:A and G:C-->C:G) possess similar mutation rates (24.8 x 10(-10) and 20.6 x 10(-10), respectively), which are about fivefold greater than the comparable rates for transversions at non-CpG dinucleotides. The enhancement of transversions at CpG suggests that the model by which mutations occur at CpG may need to be reevaluated. The relationship, if any, between deamination of 5-methyl cytosine and enhancement of transversions at CpG remains to be defined.  相似文献   

9.
Escherichia coli contains a base mismatch correction system called VSP repair that is known to correct T:G mismatches to C:G when they occur in certain sequence contexts. The preferred sequence context for this process is the site for methylation by the E. coli DNA cytosine methylase (Dcm). For this reason, VSP repair is thought to counteract potential mutagenic effects of deamination of 5-methylcytosine to thymine. We have developed a genetic reversion assay that quantitates the frequency of C to T mutations at Dcm sites and the removal of such mutations by DNA repair processes. Using this assay, we have studied the repair of U: G mismatches in DNA to C: G and have found that VSP repair is capable of correcting these mismatches. Although VSP repair substantially affects the reversion frequency, it may not be as efficient at correcting U: G mismatches as the uracil DNA glycosylase-mediated repair process.  相似文献   

10.
11.
Escherichia coli contains a base mismatch correction system called VSP repair that is known to correct T:G mismatches to C:G when they occur in certain sequence contexts. The preferred sequence context for this process is the site for methylation by the E. coli DNA cytosine methylase (Dcm). For this reason, VSP repair is thought to counteract potential mutagenic effects of deamination of 5-methylcytosine to thymine. We have developed a genetic reversion assay that quantitates the frequency of C to T mutations at Dcm sites and the removal of such mutations by DNA repair processes. Using this assay, we have studied the repair of U: G mismatches in DNA to C: G and have found that VSP repair is capable of correcting these mismatches. Although VSP repair substantially affects the reversion frequency, it may not be as efficient at correcting U: G mismatches as the uracil DNA glycosylase-mediated repair process.  相似文献   

12.
《Nucleic acids research》2022,50(18):10264
The mutational spectrum of the mitochondrial DNA (mtDNA) does not resemble any of the known mutational signatures of the nuclear genome and variation in mtDNA mutational spectra between different organisms is still incomprehensible. Since mitochondria are responsible for aerobic respiration, it is expected that mtDNA mutational spectrum is affected by oxidative damage. Assuming that oxidative damage increases with age, we analyse mtDNA mutagenesis of different species in regards to their generation length. Analysing, (i) dozens of thousands of somatic mtDNA mutations in samples of different ages (ii) 70053 polymorphic synonymous mtDNA substitutions reconstructed in 424 mammalian species with different generation lengths and (iii) synonymous nucleotide content of 650 complete mitochondrial genomes of mammalian species we observed that the frequency of AH > GH substitutions (H: heavy strand notation) is twice bigger in species with high versus low generation length making their mtDNA more AH poor and GH rich. Considering that AH > GH substitutions are also sensitive to the time spent single-stranded (TSSS) during asynchronous mtDNA replication we demonstrated that AH > GH substitution rate is a function of both species-specific generation length and position-specific TSSS. We propose that AH > GH is a mitochondria-specific signature of oxidative damage associated with both aging and TSSS.  相似文献   

13.
Summary We have previously reported some effects of DNA repair on the transition frequencies produced by an O6-methyl-guanine (MeG) or an O6-n-butyl-guanine (BuG) paired with C at the first position of the third codon in gene G of bacteriophage X174 form I'DNA (Chambers et al. 1985). We now report experiments in which the transition is produced from T:MeG or T:BuG, instead of C:MeG or C:BuG, located at this site. The site-modified DNAs were transfected into cells with normal DNA repair as well as into cells with repair defects (uvrA, uvrB, uvrC, recA, uvrArecA). The lysates were screened for phage carrying the expected transition using a characteristic change in phenotype. The data demonstrate that the transition frequency from T:BuG is low (0.3% of total phage progeny) in cells with normal repair (Escherichia coli AB1157) and increases 7-fold in uvrA cells (E. coli AB1886). A similar increase is seen in uvrB and uvrC cells (AB1885, AB1884). These data, like our previous data, indicate BuG is repaired primarily by excision. In contranst to this, the transition frequency from T:MeG is high (5±2%) in cells with normal repair. After induction of alkyl transfer repair in E. coli AB1157, the transition frequency goes up 5-fold. Compared with cells with normal repair, the transition frequency goes up 2-fold in uvrA, uvrB and uvrC cells; it goes up 1.5-fold in recA cells (E. coli AB2463). The data reinforce our earlier conclusion that MeG is repaired primarily by alkyl transfer, but the ABC excinuclease as well as RecA protein inhibit this repair process. Using the BuG data reported here and in our previous paper, we calculate that BuG pairs with a thymine residue 0.5%–0.62% of the time during replication in vivo, and that BuG markedly inhibits replication of the strand that contains it. Because of the complication introduced by alkyl transfer repair, similar calculations for MeG cannot be made from the current data.Abbreviations MeG and BuG O6-methyl-or O6-n-butyl-guanine moiety in X DNA (in each case, the plus strand nucleotide is specified first) - form I'DNA relaxed, covalently closed, circular, double-stranded DNA - Wt wild-type phenotype - Am amber phenotype - pfu plaque forming units - MNNG N-methyl-N'-nitro-N-nitrosoguanidine X mutants are named by designating the gene, the type of mutation (e.g. ms=missense), the codon number, the mutant codon and the new amino acid (where pertinent) in that order (e.g. XGam3) carries an amber in the third codon of gene G, and should not be confused with the classical am3 mutant used in the older literature to designate what is now known to be XEam7  相似文献   

14.
The crystal structure of d(CATGGGCCCATG)2 shows unique stacking patterns of a stable B↔A-DNA intermediate. We evaluated intrinsic base stacking energies in this crystal structure using an ab initio quantum mechanical method. We found that all crystal base pair steps have stacking energies close to their values in the standard and crystal B-DNA geometries. Thus, naturally occurring stacking geometries were essentially isoenergetic while individual base pair steps differed substantially in the balance of intra-strand and inter-strand stacking terms. Also, relative dispersion, electrostatic and polarization contributions to the stability of different base pair steps were very sensitive to base composition and sequence context. A large stacking flexibility is most apparent for the CpA step, while the GpG step is characterized by weak intra-strand stacking. Hydration effects were estimated using the Langevin dipoles solvation model. These calculations showed that an aqueous environment efficiently compensates for electrostatic stacking contributions. Finally, we have carried out explicit solvent molecular dynamics simulation of the d(CATGGGCCCATG)2 duplex in water. Here the DNA conformation did not retain the initial crystal geometry, but moved from the BA intermediate towards the B-DNA structure. The base stacking energy improved in the course of this simulation. Our findings indicate that intrinsic base stacking interactions are not sufficient to stabilize the local conformational variations in crystals.  相似文献   

15.
In contrast to all other known tRNAs, mammalian tRNA1Val contains two adenosines A59 and A60, opposite to U54 and psi 55 in the U psi CG sequence of the T psi C loop, which could form unusual A:U (or A: psi pairs in addition to the five "normal" G:C pairs. In order to measure the number of G:C and A:U (A: psi) pairs in the T psi C stem, we prepared the 30 nucleotide long 3'-terminal fragment of this tRNA by "m7G-cleavage". From differentiated melting curves and temperature jump experiments it was concluded that the T psi C stem in this fragment is in fact extended by an additional A60:U54 pair. A dimer of this fragment with 14 base pairs was characterized by gel electrophoresis and by the same physical methods. An additional A:U pair in the tRNA1Val fragment does not necessarily mean that this is also true for intact tRNA. However, we showed that U54 is far less available for enzymatic methylation in mammalian tRNA1Val compared to tRNA from T-E. coli. This clear difference in U54 reactivity, together with the identification of an extra A60:U54 pair in the U psi CG containing fragment suggests the presence of a 6 base pair T psi C stem and a 5 nucleotide T psi C loop in this tRNA.  相似文献   

16.
The human T cell leukemia Jurkat was used as a model to examine the requirements of T cell activation. These studies demonstrated that antibodies reactive with the T cell-specific T3 antigen were insufficient to result in the activation of Jurkat cells, determined by the secretion of IL 2. IL 2 production occurred only in the presence of a second stimulus, the phorbol ester PMA. With the use of an IL 2-specific cDNA probe, the appearance of IL 2 RNA, similarly, occurred only when cells were stimulated with both anti-T3 antibodies and PMA. These results demonstrate a two-stimulus requirement for gene expression in human T cells.  相似文献   

17.
kappa-opioid receptor ligands have raised interest for their apparent effects on mood. The potent and selective kappa-agonist salvinorin A has short-lasting (15min) depressive-like effects in rats in behavioral models used to study mood disorders. Two series of salvinorin derivatives modified at C(2) and C(18), respectively, were synthesized and their kappa-opioid receptor affinities, potencies, and efficacies were evaluated using in vitro receptor binding and biochemical functional assays. Modification at C(2) yielded potent kappa-agonists that are predicted to have improved metabolic stability (14a, 15a) or increased water solubility (10b). Our preliminary SAR study at C(18) suggested that this part of the molecule interacts with a tight lipophilic pocket of the kappa-receptor.  相似文献   

18.
C3H/10T1/2 mouse embryo cells and a transformed clone were used in these initial experiments to investigate the future application of this model culture system to studies of ether-linked lipids in cancer cells. Clone 8 cells are nontumorigenic, nontransformed, and maintain normal morphology to passages 15–20. Clone 16 cells were derived from morphologically transformed foci of clone 8 cells exposed to the chemical carcinogen, 3-methylcholanthrene, and are highly tumorigenic. The data presented here demonstrate that the high amounts of ether-linked lipids, characteristic of tumors, are likewise elevated in cells that have been oncogenically transformed in vitro. When incubated with labeled fatty alcohols, the transformed cells show a stimulated incorporation of radioactivity into alkyldiacylglycerols (>100% over clone 8), whereas radioactivity in the alkyl moiety of the phospholipids is not altered. Analysis of the lipids formed from [1-14C]hexadecanol indicates that the nontransformed cells have a greater capacity to oxidize hexadecanol and incorporate the resulting carboxylic acid into acyl groups. Quantitative analysis of cellular lipids shows that in the oncogenically transformed cells alkyldiacylglycerols are increased (123% over clone 8).  相似文献   

19.
We examined the replication fidelity of an Arg660Ser (R660S) mutant of Thermus aquaticus DNA polymerase I (Taq pol I). In a forward mutation assay, R660S showed a marked reduction in T→C transitions, one of the most frequent errors made by the wild-type enzyme. Steady-state kinetics showed that R660S discriminates against dGTP incorporation at a template T 13-fold better than the wild-type. R660S was also 3.2-fold less efficient than the wild-type at extending a T:dG mismatch. These results indicate that R660S has enhanced fidelity during incorporation and extension, which reduces its T→C transition frequency. Interestingly, R660S also discriminated correct from incorrect nucleotides at the incorporation step of C:dATP, A:dATP, G:dATP and C:8-OH-dGTP mispairs 28-, 6.0-, 4.1- and 6.8-fold better, respectively, than the wild-type, although it may not always be as accurate as the wild-type at the extension step. A structural model suggests that Arg660 may participate in two interactions that influence fidelity; the guanidinium group of Arg660 might interact with the incoming guanine base at the major groove and it might compete for forming another interaction with the primer terminus. Substituting Arg with Ser may eliminate or alter these interactions and destabilize the closed complex with incorrect substrates. Our data also suggest that T:dGTP and C:dATP base pairs form ‘wobble’ structures at the incorporation step of Taq pol I.  相似文献   

20.
Yin J  Seo KY  Loechler EL 《DNA Repair》2004,3(3):323-334
Benzo[a]pyrene (B[a]P), a potent mutagen/carcinogen, is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g. GC --> TA, GC --> AT, etc.) principally via its major adduct [+ta]-B[a]P-N2-dG. Recent findings suggest that different lesion bypass DNA polymerases may be involved in different mutagenic pathways, which is the subject of this report. [+ta]-B[a]P-N2-dG built into a plasmid in a 5'-TGT sequence gives approximately equal numbers of G --> T and G --> A mutations when host E. coli are UV irradiated prior to transformation, so this sequence context was chosen to investigate what DNA polymerases are involved in G --> T versus G --> A mutations. G --> T mutations decline (>10-fold) if E. coli either are not UV-irradiated or are deficient in DNA polymerase V ((delta)umuD/C), demonstrating a role for damage-inducible DNA Pol V in a G --> T pathway. G --> T mutations are not affected by transformation into E. coli deficient in either DNA polymerases II or IV. While the work herein was in progress, Lenne-Samuel et al. [Mol. Microbiol. 38 (2000) 299] built the same adduct into a plasmid in a 5'-GGA sequence, and showed that the frequency of G --> T mutations was similar in UV-irradiated and unirradiated host E. coli cells, suggesting no involvement by damage-inducible, lesion bypass DNA polymerases (i.e., not II, IV or V); furthermore, a role for DNA Pol V was explicitly ruled out. The easiest way to reconcile the findings of Lenne-Samuel et al. with the findings herein is if two G --> T mutagenic pathways exist for [+ta]-B[a]P-N2-dG, where sequence context dictates which pathway is followed. In contrast to the G --> T mutations, herein G --> A mutations from [+ta]-B[a]P-N2-dG in the 5'-TGT sequence context are shown not to be affected by UV-irradiation of host E. coli, and are not dependent on DNA Pol V, or Pol II, Pol IV, or the damage-inducible, but SOS-independent UVM system. Published studies, however, have shown that G --> A mutations are usually enhanced by UV-irradiation of host E. coli prior to the introduction of plasmids either site-specifically modified with [+ta]-B[a]P-N2-dG or randomly adducted with (+)-anti-B[a]PDE; both findings imply the involvement of a lesion-bypass DNA polymerase. These disparate results suggest the existence of two G --> A mutagenic pathways for [+ta]-B[a]P-N2-dG as well, although confirmation of this awaits further study. In conclusion, a comparison between the evidence presented herein and published findings suggests the existence of two distinct mutagenic pathways for both G --> T and G --> A mutations from [+ta]-B[a]P-N2-dG, where in each case one pathway is not damage-inducible and not dependent on a lesion-bypass DNA polymerase, while the second pathway is damage-inducible and dependent on a lesion-bypass DNA polymerase. Furthermore, DNA sequence context appears to dictate which pathway (as defined by the involvement of different DNA polymerases) is followed in each case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号