首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 937 毫秒
1.
采用均匀设计法优化了Acetobacter xylinumNUST4的基础培养基,向其中添加了Mg2+、Fe2+、对氨基苯甲酸、烟酸、生物素、乙醇,优化后的发酵培养基组成为:葡萄糖24g,蔗糖22g,蛋白胨16g,醋酸2.4mL,磷酸氢二钠3.5g,磷酸二氢钾1g,硫酸镁6g,硫酸亚铁0.015g,烟酸0.003g,生物素0.02g和乙醇20mL,纤维素产量达9.87g,定容至1L,比由S-H培养基发酵合成的纤维素产量(仅0.74g.L-  相似文献   

2.
嗜热厌氧杆菌X514(Thermoanaerobactersp.X514)能同时发酵五碳糖、六碳糖并产出乙醇,是纤维素乙醇生产中最具潜力的菌株之一。单因子试验证明,酵母提取物中对X514乙醇发酵起决定性影响的组分为B族维生素,并进一步确定了B族维生素中对乙醇发酵有影响作用的6种维生素。结合培养基中的其他影响因子,应用Plackett-Burman试验设计方法,筛选出X514乙醇发酵的极大影响因子为NH4Cl、烟酸及硫胺素。随后用最陡爬坡试验确定了影响因子最佳取值区域,并利用响应面方法优化合成培养基。优化结果显示,当以5 g/L葡萄糖为底物时,在NH4Cl、烟酸及硫胺素的浓度分别为1.05 g/L、6.4 mg/L及7.0 mg/L的条件下,X514的乙醇产出浓度达到最优理论值34.46 mmol/L。试验验证该条件下乙醇产出浓度为33.78 mmol/L。试验值与理论值接近,原始矿物质培养基中乙醇产出浓度的5.1倍,并与添加5 g/L的酵母提取物培养基的乙醇产出浓度(34.67 mmol/L)相当。  相似文献   

3.
建立筛选利用木糖为碳源产乙醇酵母模型,获得一株适合利用木质纤维素为原料产乙醇的酵母菌株。样品经麦芽汁培养基培养后,以木糖为唯一碳源的筛选培养基初筛,再以重铬酸钾显色法复筛。通过生理生化和26D1/D2区对筛选得到的菌株进行分析和鉴定,该菌初步鉴定为Pichia caribbica。经过筛选得到的菌株Y2-3以木糖(40g/L)为唯一碳源发酵时:生物量为23.5g/L,木糖利用率为94.7 %,乙醇终产量为4.57 g/L;以混合糖(葡萄糖40 g/L,木糖20 g/L)发酵时:生物量为28.6 g/L,木糖利用率为94.2 %,葡萄糖利用率为95.6%,乙醇终产量为20.6 g/L。Pichia caribbica是可以转化木糖及木糖-葡萄糖混合糖为乙醇的酵母菌株,为利用木质纤维素发酵乙醇的进一步研究奠定了基础。  相似文献   

4.
维生素在丙酮酸过量合成中的重要作用   总被引:19,自引:0,他引:19  
研究了烟酸、硫胺素、吡哆醇、生物素和核黄素对一株光滑球拟酵母(\%Torulopsis glabrata\%) WSH\|IP303以葡萄糖为碳源、以氯化铵为唯一氮源生产丙酮酸的影响。利用正交试验方法,确证了硫胺素是影响WSH\|IP303生产丙酮酸的最重要因素。在硫胺素浓度一定(0.01~0.015mg/L)的前提下,提高烟酸浓度有助于加快耗糖速度。当烟酸、硫胺素、吡哆醇、生物素和核黄素的浓度分别为8、0.015、0.4、0.04和01mg/L时,摇瓶发酵48h,丙酮酸产量和产率可分别达到52.4g/L和0525g/g。采用优化的维生素组合方式,进行2.5L罐分批发酵,在初糖浓度120g/L的条件下发酵57.5h,丙酮酸产量和产率分别达到69.4g/L和0593g/g,分别比摇瓶培养的最好结果提高了32.%和13%。  相似文献   

5.
均匀设计法优化灰树花深层培养基配方   总被引:2,自引:1,他引:1  
系统研究了碳源、氮源、无机盐、维生素等培养基因素对灰树花深层发酵菌丝体产量的影响 ,并通过均匀设计法优化了发酵培养基配方。结果表明 :4 6 %玉米粉、3 5 %豆饼粉、0 1%葡萄糖、0 32 %KH2 PO4 、0 0 1%MgSO4 、少量VB1的培养基配方可使菌丝体产量达到最大。采用此配方试验 ,菌丝体产量平均值达 1 77± 0 0 6g/10 0mL。  相似文献   

6.
细菌纤维素发酵培养基的优化及超微观结构分析   总被引:1,自引:0,他引:1  
为了提高细菌纤维素的产量, 本研究对一株氧化葡糖杆菌菌株J2液体发酵生产细菌纤维素的培养基进行了优化, 并对其代谢的细菌纤维的超微观结构进行了观察。运用Plackett-Burman试验设计法对8个相关影响因素的效应进行了评价, 筛选出了有显著效应的3个因素: 酵母膏、ZnSO4、无水乙醇, 其他5个因素的影响未达到显著水平(P>0.05)。然后采用Box-Behnken的中心组合试验设计和响应面分析方法(RSM)确定了上述三个因素的最佳浓度, 并且以棉纤维为对照, 运用扫描电镜观察了细菌纤维素的超微观结构, 结果表明: 菌株J2利用优化后的发酵培养基生产细菌纤维素的产量为11.52 g/100 mL, 是优化前的1.35倍, 电镜照片显示细菌纤维素微纤维丝直径<0.1 mm, 比棉纤维细很多, NaOH处理可以除去纤维网络结构中的菌体。  相似文献   

7.
为了提高细菌纤维素的产量, 本研究对一株氧化葡糖杆菌菌株J2液体发酵生产细菌纤维素的培养基进行了优化, 并对其代谢的细菌纤维的超微观结构进行了观察。运用Plackett-Burman试验设计法对8个相关影响因素的效应进行了评价, 筛选出了有显著效应的3个因素: 酵母膏、ZnSO4、无水乙醇, 其他5个因素的影响未达到显著水平(P>0.05)。然后采用Box-Behnken的中心组合试验设计和响应面分析方法(RSM)确定了上述三个因素的最佳浓度, 并且以棉纤维为对照, 运用扫描电镜观察了细菌纤维素的超微观结构, 结果表明: 菌株J2利用优化后的发酵培养基生产细菌纤维素的产量为11.52 g/100 mL, 是优化前的1.35倍, 电镜照片显示细菌纤维素微纤维丝直径<0.1 mm, 比棉纤维细很多, NaOH处理可以除去纤维网络结构中的菌体。  相似文献   

8.
目前纤维素乙醇成本偏高的根本原因在于没有达到淀粉质乙醇发酵水平的"三高"(高浓度、高转化率和高效率)指标,提高水解糖液浓度和避免发酵抑制物来实现浓醪发酵,是解决问题的关键。文中以常压甘油自催化预处理麦草为底物,尝试采用不同发酵策略,探讨其浓醪发酵产纤维素乙醇的可行性。在优化培养条件(15%底物浓度,加酶量30 FPU/g干底物,温度37℃,接种量10%)下同步糖化发酵72 h,纤维素乙醇产量为31.2 g/L,转化率为73%,发酵效率0.43 g/(L·h);采用半同步(预酶解24 h)糖化发酵72 h,纤维素乙醇浓度达到33.7 g/L,转化率为79%,发酵效率为0.47 g/(L·h),其中(半)同步糖化发酵中90%以上纤维素已被糖化水解用于发酵;采用分批补料式半同步糖化发酵,补料到基质浓度相当于30%,发酵72 h时纤维素乙醇产量达到51.2 g/L,转化率为62%,发酵效率为0.71 g/(L·h)。在所有浓醪发酵中乙酸不足3 g/L,无糠醛和羟甲基糠醛等发酵抑制物。以上结果表明,常压甘油自催化预处理木质纤维素基质适用于纤维素乙醇发酵;分批补料式半同步糖化发酵策略可用来进行浓醪纤维素乙醇发酵;未来工作中提高基质纯度和强化酶解产糖是浓醪纤维素乙醇达到"三高"指标的关键。  相似文献   

9.
珍稀药用真菌——樟芝深层发酵培养条件的优化   总被引:1,自引:0,他引:1  
对樟芝深层发酵培养基进行了筛选,并在此基础上对发酵条件进行了优化。以樟芝深层发酵菌丝体三萜产量为主要目标产物,确定发酵培养条件为:40g/L葡萄糖,6g/L豆饼粉,1g/L K_2HPO_4,0.5g/L MgSO4,VB_1 100mg/L,自然pH,接种量为20%,装液量为100mL/250mL三角瓶,转速100r/min,26℃恒温培养6d,胞内三萜产量达15.25mg/100mL发酵液。  相似文献   

10.
目的:预处理对木质纤维素降解的影响.方法:从土壤中分离筛选到高纤维素酶活的黏细菌菌株So ce sh1008.该菌具有CMC酶活(CMCase)及微晶纤维素酶活性.研究NaOH联合黏细菌降解盐蒿、稻草、棉花秸秆和甘蔗渣四种木质纤维素的情况.结果:碱(2% NaOH) -黏细菌处理的方法优于黏细菌-碱的方法,其中降解棉花秸秆降解效果最明显,以5.0g木质纤维素为原料,其最终干重损失达2.1g,溶液中总糖含量和还原糖含量均值分别为12.8 mg/mL和0.93 mg/mL.酵母菌发酵产乙醇的研究结果表明,最佳发酵时间为47h,碱-黏细菌甘蔗渣降解液发酵效果最好,乙醇产出达6.0%.结论:黏细菌联合2% NaOH能有效降解甘蔗渣,提高乙醇产量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号