首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The particulate membrane-bound methane hydroxylase (pMMOH) was isolated from methane-oxidizing cells of Methylococcus capsulatus (strain M). At SDS PAGE, pMMOH displays three bands: 47 (alpha), 27 (beta), and 25 kDa (gamma). The ESR spectrum of pMMOH incubated with hydrogen peroxide (final concentration 20 mM) at 4 degrees C exhibited, along with the copper signal of type I with g = 2.05, signals of cytochrome with g = 3.0 and of high-spin ferriheme with g = 6.00. After incubation at -30 degrees C, additional signals with g 8.5 and 13.5 were observed. These signals, which have not been recorded previously in pMMOH preparations, are due to an intermediate of the pMMOH active site, which arises in the reaction of hydrogen peroxide with pMMOH at -30 degrees C. It was established that this intermediate is a high-spin dimer [Fe(IlI)-Fe(IV)] with S = 9/2 and different degree of rhombic distortion of structure (it is responsible for both signals). Presumably, the signal with g = 8.5 also arises from the same dimer [Fe(III)-Fe(IV)], but with S = 7/2. The presence of the intermediate [Fe(lII)-Fe(IV)] in pMMOH preparations suggests that the original state of the pMMOH active site is the dimer [Fe(III)-Fe(III)] which is located in the beta-subunit and cannot be detected by ESR. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http:// www.maik.ru.  相似文献   

2.
Mitochondria from respiring cells were isolated under anaerobic conditions. Microscopic images were largely devoid of contaminants, and samples consumed O2 in an NADH-dependent manner. Protein and metal concentrations of packed mitochondria were determined, as was the percentage of external void volume. Samples were similarly packed into electron paramagnetic resonance tubes, either in the as-isolated state or after exposure to various reagents. Analyses revealed two signals originating from species that could be removed by chelation, including rhombic Fe3+ (g = 4.3) and aqueous Mn2+ ions (g = 2.00 with Mn-based hyperfine). Three S = 5/2 signals from Fe3+ hemes were observed, probably arising from cytochrome c peroxidase and the a3:Cub site of cytochrome c oxidase. Three Fe/S-based signals were observed, with averaged g values of 1.94, 1.90 and 2.01. These probably arise, respectively, from the [Fe2S2]+ cluster of succinate dehydrogenase, the [Fe2S2]+ cluster of the Rieske protein of cytochrome bc 1, and the [Fe3S4]+ cluster of aconitase, homoaconitase or succinate dehydrogenase. Also observed was a low-intensity isotropic g = 2.00 signal arising from organic-based radicals, and a broad signal with g ave = 2.02. Mössbauer spectra of intact mitochondria were dominated by signals from Fe4S4 clusters (60–85% of Fe). The major feature in as-isolated samples, and in samples treated with ethylenebis(oxyethylenenitrilo)tetraacetic acid, dithionite or O2, was a quadrupole doublet with ΔE Q = 1.15 mm/s and δ = 0.45 mm/s, assigned to [Fe4S4]2+ clusters. Substantial high-spin non-heme Fe2+ (up to 20%) and Fe3+ (up to 15%) species were observed. The distribution of Fe was qualitatively similar to that suggested by the mitochondrial proteome.  相似文献   

3.
Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 ?-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10?2 M?1 s?1; at pH 7.4], whereas the value of k on for NO2 ? reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M?1 s?1 (at pH 7.4). CL facilitates the NO2 ?-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 ?-mediated conversion of CL–CM-cytc-Fe(II) to CL–CM-cytc-Fe(II)-NO (5.6 ± 0.6 M?1 s?1; at pH 7.4) being slightly higher than that for the NO2 ?-mediated conversion of CL–cytc-Fe(II) to CL–cytc-Fe(II)-NO (2.6 ± 0.3 M?1 s?1; at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10?6 M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are ?1.05 ± 0.07 and ?1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH?. These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL–CM-cytc.  相似文献   

4.

Background and aims

Arsenic (As) is one of the most widespread environmental contaminants. The aim of our study was to test a novel bioremediation system based on the symbiosis between leguminous plant and genetically engineered rhizobia.

Methods

The arsenite [As(III)] S-adenosylmethionine methyltransferase gene (CrarsM) from the alga Chlamydomonas reinhardtii was inserted into the chromosome of Rhizobium leguminosarum bv. trifolii strain R3. The As methylation ability of the recombinant Rhizobium was tested under free living conditions and in symbiosis with red clover plants. Arsenic speciation was determined using high-performance liquid chromatography-inductively coupled plasma mass spectrometry.

Results

Under free-living conditions, CrarsM-recombinant R. leguminosarum gained the ability to methylate As(III) to methylated arsenicals, including methylarsenate [MAs(V)], dimethylarsenate [DMAs(V)] and trimethylarsine oxide [TMAs(V)O]. Red clover plants were inoculated with either control (non-recombinant) or CrarsM-recombinant R. leguminosarum and exposed to 5 or 10 μM arsenite. No methylated As species were detected in red clover plants inoculated with control R. leguminosarum. In contrast, all three methylated species were detected in both the nodules and the shoots when the recombinant Rhizobium established symbiosis with red clover, accounting for 74.7–75.1% and 29.1–42.4% of the total As in the two plant tissues, respectively. The recombinant symbiont also volatilized small amounts of As.

Conclusions

The present study demonstrates that engineered rhizobia expressing an algal arsM gene can methylate and volatilize As, providing a proof of concept for potential future use of legume-rhizobia symbionts for As bioremediation.
  相似文献   

5.
The classical definition of mesophyll conductance (g m) represents an apparent parameter (g m,app) as it places (photo)respired CO2 at the same compartment where the carboxylation by Rubisco takes place. Recently, Tholen and co-workers developed a framework, in which g m better describes a physical diffusional parameter (g m,dif). They partitioned mesophyll resistance (r m,dif = 1/g m,dif) into two components, cell wall and plasmalemma resistance (r wp) and chloroplast resistance (r ch), and showed that g m,app is sensitive to the ratio of photorespiratory (F) and respiratory (R d) CO2 release to net CO2 uptake (A): g m,app = g m,dif/[1?+?ω(F?+?R d)/A], where ω is the fraction of r ch in r m,dif. We herein extend the framework further by considering various scenarios for the intracellular arrangement of chloroplasts and mitochondria. We show that the formula of Tholen et al. implies either that mitochondria, where (photo)respired CO2 is released, locate between the plasmalemma and the chloroplast continuum or that CO2 in the cytosol is completely mixed. However, the model of Tholen et al. is still valid if ω is replaced by ω(1?σ), where σ is the fraction of (photo)respired CO2 that experiences r ch (in addition to r wp and stomatal resistance) if this CO2 is to escape from being refixed. Therefore, responses of g m,app to (F?+?R d)/A lie somewhere between no sensitivity in the classical method (σ =1) and high sensitivity in the model of Tholen et al. (σ =0).  相似文献   

6.
The possibility of reduction of vanadate monomer in the mycelium of fungus Phycomyces blakesleeanus was investigated in this study by means of polarography. Control experiments were performed with vanadyl [V(IV)] and vanadate [V(V)] in 10 mM Hepes, pH 7.2. Addition of P. blakesleeanus mycelium resulted in disappearance of all V(IV) polarographic waves recorded in the control. This points to the uptake of all available V(IV) by the mycelium, up to 185 µmol/gFW, and suggests P. blakesleeanus as a potential agent in V(IV) bioremediation. Polarographic measurements of mycelium with low concentrations (0.1–1 mM) of V(V), that only allows the presence of monomer, showed that fungal mycelia removes around 27% of V(V) from the extracellular solution. Uptake was saturated at 104 ± 2 µmol/gFW which indicates excellent bioaccumulation capability of P. blakesleeanus. EPR, 51V NMR and polarographic experiments showed no indications of any measurable extracellular complexation of V(V) monomer with fungal exudates, reduction by the mycelium or adsorption to the cell wall. Therefore, in contrast to vanadium oligomers, vanadate monomer interactions with the mycelium are restricted to its transport into the fungal cell, probably by a phosphate transporter.  相似文献   

7.
8.
The key enzyme of the fermentation of glutamate by Acidaminococcus fermentans, 2-hydroxyglutarylcoenzyme A dehydratase, catalyzes the reversible syn-elimination of water from (R)-2-hydroxyglutaryl-coenzyme A, resulting in (E)-glutaconylcoenzyme A. The dehydratase system consists of two oxygen-sensitive protein components, the activator (HgdC) and the actual dehydratase (HgdAB). Previous biochemical and spectroscopic studies revealed that the reduced [4Fe–4S]+ cluster containing activator transfers one electron to the dehydratase driven by ATP hydrolysis, which activates the enzyme. With a tenfold excess of titanium(III) citrate at pH 8.0 the activator can be further reduced, yielding about 50% of a superreduced [4Fe–4S]0 cluster in the all-ferrous state. This is inferred from the appearance of a new Mössbauer spectrum with parameters δ = 0.65 mm/s and ΔE Q = 1.51–2.19 mm/s at 140 K, which are typical of Fe(II)S4 sites. Parallel-mode electron paramagnetic resonance (EPR) spectroscopy performed at temperatures between 3 and 20 K showed two sharp signals at g = 16 and 12, indicating an integer-spin system. The X-band EPR spectra and magnetic Mössbauer spectra could be consistently simulated by adopting a total spin S t = 4 for the all-ferrous cluster with weak zero-field splitting parameters D = ?0.66 cm?1 and E/D = 0.17. The superreduced cluster has apparent spectroscopic similarities with the corresponding [4Fe–4S]0 cluster described for the nitrogenase Fe-protein, but in detail their properties differ. While the all-ferrous Fe-protein is capable of transferring electrons to the MoFe-protein for dinitrogen reduction, a similar physiological role is elusive for the superreduced activator. This finding supports our model that only one-electron transfer steps are involved in dehydratase catalysis. Nevertheless we discuss a common basic mechanism of the two diverse systems, which are so far the only described examples of the all-ferrous [4Fe–4S]0 cluster found in biology.  相似文献   

9.

Background and aims

Although the role of microbial iron respiration in tidal marshes has been recognized for decades, the effect of rhizosphere processes on dissimilatory ferric iron reduction (FeR) is poorly known. Herein, we examined the FeR surrounding the root zone of three tidal marsh plants.

Methods

Using in situ rhizoboxes, we accurately separated rhizobox soil as one rhizosphere zone, and three bulk soil zones. Dissimilatory and sulfidic-mediated FeR were quantified by accumulation of non-sulfidic Fe(II) and Fe sulfides over time, respectively.

Results

The rates of dissimilatory FeR attained 42.5 μmol Fe g?1 d?1 in the rhizosphere, and logarithmically declined by up to 19.1 μmol Fe g?1 d?1 in the outer bulk soil. The rates of sulfidic-mediated FeR were less than 2 μmol Fe g?1 d?1 among all zones. Poorly crystalline Fe(III), DOC and DON, porewater Fe2+, and SO42? were all enriched in the rhizosphere, whereas non-sulfidic Fe(II) and Fe sulfides gradually accumulated away from the roots. Iron reducers (Geobacter, Bacillus, Shewanella, and Clostridium) had higher populations in the rhizosphere than in the bulk soil. Higher rates of dissimilatory FeR were observed in the Phragmites australis and Spartina alterniflora rhizoboxes than in the Cyperus malaccensis rhizoboxes.

Conclusions

The radial change pattern of dissimilatory FeR rates were determined by allocation of poorly crystalline Fe(III) and dissolved organic carbon. The interspecies difference of rhizosphere dissimilatory FeR was associated with the root porosity and aerenchyma of the tidal marsh plants.
  相似文献   

10.
The interaction of amyloid β-peptide (Aβ) with the iron-storage protein ferritin was studied in vitro. We have shown that Aβ during fibril formation process is able to reduce Fe(III) from the ferritin core (ferrihydrite) to Fe(II). The Aβ-mediated Fe(III) reduction yielded a two-times-higher concentration of free Fe(II) than the spontaneous formation of Fe(II) by the ferritin itself. We suggest that Aβ can also act as a ferritin-specific metallochaperone-like molecule capturing Fe(III) from the ferritin ferrihydrite core. Our observation may partially explain the formation of Fe(II)-containing minerals in human brains suffering by neurodegenerative diseases.  相似文献   

11.
A site-directed C14G mutation was introduced into the stromal PsaC subunit of Synechococcus sp. strain PCC 7002 in vivo in order to introduce an exchangeable coordination site into the terminal FB [4Fe–4S] cluster of Photosystem I (PSI). Using an engineered PSI-less strain (psaAB deletion), psaC was deleted and replaced with recombinant versions controlled by a strong promoter, and the psaAB deletion was complemented. Modified PSI accumulated at lower levels in this strain and supported slower photoautotrophic growth than wild type. As-isolated PSI complexes containing PsaCC14G showed resonances with g values of 2.038 and 2.007 characteristic of a [3Fe–4S]1+ cluster. When the PSI complexes were illuminated at 15 K, these resonances partially disappeared and two new sets of resonances appeared. The majority set had g values of 2.05, 1.95, and 1.85, characteristic of FA ?, and the minority set had g values of 2.11, 1.90, and 1.88 from FB′ in the modified site. The S?=?1/2 spin state of the latter implied the presence of a thiolate as the terminal ligand. The [3Fe–4S] clusters could be partially reconstituted with iron, producing a larger population of [4Fe–4S] clusters. Rates of flavodoxin reduction were identical in PSI complexes isolated from wild type and the PsaCC14G variant strain; this implied equivalent capacity for forward electron transfer in PSI complexes that contained [3Fe–4S] and [4Fe–4S] clusters. The development of this cyanobacterial strain is a first step toward translation of in vitro PSI-based biosolar molecular wire systems in vivo and provides new insights into the formation of Fe/S clusters.  相似文献   

12.
Wheat Fusarium Head Blight (FHB), mainly caused by Fusarium graminearum (F.g), is a destructive fungal disease worldwide. FHB can not only cause considerable reduction in yield, but more seriously, can contaminate grain by trichothecene toxins released by the fungus. Here, we report new insights into the function and underlying mechanisms of a UDP-glycosyltransferase gene, Ta-UGT 3 , that is involved in FHB resistance in wheat. In our previous study, Ta-UGT 3 was found to enhance host tolerance against deoxynivalenol (DON) in Arabidopsis. In this study, four transgenic lines over-expressing Ta-UGT 3 in a FHB highly susceptible wheat variety, Alondra’s, were obtained and characterized. 3 years of assays using single floret inoculation with F.g indicated that all four transgenic lines exhibited significantly enhanced type II resistance to FHB and less DON accumulation in the grains compared to the untransformed control. Histological observation using GFP labelled F.g was in agreement with the above test results since over-expression of Ta-UGT 3 dramatically inhibited expansion of F.g. To explore the putative mechanism of resistance mediated by Ta-UGT 3 , microarray analysis, qRT-PCR and hormone measurements were performed. Microarray analysis showed that DON up-regulated genes, such as TaNPR1, in the susceptible control, and down-regulated genes in F.g inoculated transgenic lines, while qRT-PCR showed that some defence related genes were up-regulated in F.g inoculated transgenic lines. Ta-UGT 3 over-expression also changed the contents of the endogenous hormones SA and JA in the spikes. These data suggest that Ta-UGT 3 positively regulates the defence responses to F.g, perhaps by regulating defence-related and DON-induced downstream genes.  相似文献   

13.
14.

Objective

To investigate the bioreduction of toxic pentavalent vanadium [vanadate; V(V)] in the acidophilic, Fe(III)-reducing obligately heterotrophic bacterium, Acidocella aromatica PFBC.

Results

Although the initial lag-phase of growth became extended with increasing initial V(V) concentrations, the final cell density during aerobic growth of A. aromatica PFBC was unaffected by up to 2 mM V(V). While strain PFBC is an aerobe, growth-decoupled PFBC cell suspensions directly reduced V(V) using fructose, both micro-aerobically and anaerobically, under highly acidic (pH 2) and moderately acidic (pH 4.5) conditions. Bio reduced V(IV) was subsequently precipitated even under micro-aerobic conditions, mostly by encrusting the cell surface. An anaerobic condition at pH 4.5 was optimal for forming and maintaining stable V(IV)-precipitates. Recovery of approx. 70 % of V(V) from the solution phase was made possible with V(V) at 1 mM.

Conclusions

The first case of direct V(V) reducing ability and its subsequent V recovery from the solution phase was shown in acidophilic prokaryotes. Possible utilities of V(V) bioreduction in acidic conditions, are discussed.
  相似文献   

15.
Xi  Nianxun  Zhu  Bi-Ru  Zhang  Da-Yong 《Plant and Soil》2017,412(1-2):267-281

Aims

The uptake and tolerance of antimonite [Sb(III)] and antimonate [Sb(V)] were investigated in two populations of Achillea wilhelmsii, one from strongly Sb-enriched mine soil, the other from uncontaminated soil, in comparison with non-metallicolous Silene vulgaris and Thlaspi arvense.

Methods

Tolerance was assessed from root elongation and biomass accumulation after exposure to a series of concentrations of Sb(III) or Sb(V) in hydroponics.

Results

For all the species Sb(III) was more toxic than Sb(V). S. vulgaris was the most Sb(III)-tolerant species, and A. wilhelmsii the most Sb(V)-tolerant one. There were no considerable interspecific differences regarding the root and shoot Sb concentrations. Sb(III) and Sb(V) tolerance and accumulation were not different between the metallicolous and the non-metallicolous A. wilhelmsii populations. Sb(III) uptake was partly inhibited by silicon. Sb(V) uptake was strongly inhibited by chloride.

Conclusions

There is uncorrelated variation among species in Sb(V) and Sb(III) tolerance, showing that plants sequester Sb(V) and Sb(III) in different ways. Sb(V) seems to be taken up via monovalent anion channels, and Sb(III) via silicon transporters, at least in part. The relatively high Sb(V) tolerance in A. wilhelmsii seems to be a species-wide property, rather than a product of local adaptation to Sb-enriched soil.
  相似文献   

16.
The crystal structure of the ISC-like [2Fe–2S] ferredoxin (FdxB), probably involved in the de novo iron-sulfur cluster biosynthesis (ISC) system of Pseudomonas putida JCM 20004, was determined at 1.90-Å resolution and displayed a novel tail-to-tail dimeric form. P. putida FdxB lacks the consensus free cysteine usually present near the cluster of ISC-like ferredoxins, indicating its primarily electron transfer role in the iron-sulfur cluster. Orientation-selective electron–nuclear double resonance spectroscopic analysis of reduced FdxB in conjunction with the crystal structure has identified the innermost Fe2 site with a high positive spin population as the nonreducible iron retaining the Fe3+ valence and the outermost Fe1 site as the reduced iron with a low negative spin density. The average g max direction is skewed, forming an angle of about 27.3° (±4°) with the normal of the [2Fe–2S] plane, whereas the g int and g min directions are distributed in the cluster plane, presumably tilted by the same angle with respect to this plane. These results are related to those for other [2Fe–2S] proteins in different electron transport chains (e.g. adrenodoxin) and suggest a significant distortion of the electronic structure of the reduced [2Fe–2S] cluster under the influence of the protein environment around each iron site in general.  相似文献   

17.
Knoevenagel cyclocondensations of α-hydroxy naphthaldehyde with β-oxodithioesters and ketene dithioacetals yielded 2H-benzo[f]chromene-2-thiones and 2H-benzo[f]chromen-2-ones, respectively, in high yields. The newly synthesized compounds were evaluated for antifungal and antibacterial activities. Among them, compounds (2-furyl)(3-thioxo-3H-benzo[f]chromen-2-yl)methanone and phenyl(3-oxo-3H-benzo[f]chromen-2-yl)methanone exhibited excellent antifungal activity against tested fungi Curvularia lunata and Fusarium moniliforme. The highest antibacterial activity against the tested bacteria Escherichia coli and Staphylococcus aureus was observed for (4-chlorophenyl)(3-oxo-3H-benzo[f]chromen-2-yl)methanone. The results of antimicrobial screening demonstrate that (2-furyl)(3-thioxo-3H-benzo[f]chromen-2-yl)methanone, phenyl(3-oxo-3H-benzo[f]chromen-2-yl)methanone, and (4-chlorophenyl)(3-oxo-3H-benzo[f]chromen-2-yl)methanone are promising as antimicrobial drugs.  相似文献   

18.
Identification of noninvasive and informative sites on the body reflecting the development of body thermal imbalance during extravehicular activities (EVAs) is highly important for enhancing astronaut safety. Temperature changes were evaluated on several areas of the head (the mastoid fossa (T mf ), the forehead (T fo ), and the cheek (T ch )) and on the fingers (T fing ). Subjects were dressed in a multicompartment liquid cooling/warming garment. Studies I and II consisted of different combinations of hood versus garment cooling or warming imposed across stages; studies III and IV involved sagittally divided cooling or warming regimes with the hood worn (study III) or with the head uncovered (study IV). In studies I and II, T mf significantly (P < 0.05) differed between stages 2, when the head was cooled and the rest of the body heated, and 3, when the head was heated and the rest of the body cooled. The T mf changes were consistent with the thermal conditions imposed on the head but not reflective of the developing body heat deficit. In study III, the T mf at stages 2 and 3 on the right or the left followed the thermal conditions on the ipsilateral side of the body (P < 0.01). In study IV, T fing showed no significant differences across stages. In studies I–IV, T fing showed consistent changes across stages (P < 0.05), reflecting the developing body heat deficit. In all studies, there were no significant differences in rectal temperature (T re ) across stages. T mf and temperatures at other head skin sites did not respond in accordance with the actual intensity of a heat or cold flux from the garment and were not reflective of the overall development of body thermal imbalance. T fing was a more adequate indicator of initial thermal destabilization and provided information that would be useful for monitoring the thermal balance and comfort during EVAs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号