首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eighteen side-chain-protected amino acids, routinely employed in solid-phase peptide synthesis, were derivatized to their phenylthiohydantoins (PTH) by one cycle of the Edman degradation. All of these side-chain-protected PTH amino acids elute, with almost-baseline resolution, in less than 18 min by high-performance liquid chromatography, utilizing a biphasic gradient of acetonitrile in 0.01 n sodium acetate, pH 4.5, or a linear gradient of 0 to 100% acetonitrile with the exception of the coelution of a O-benzyl-threonine and carbobenzoxy-lysine phenylthiohydantoin amino acids. The derivatized amino acids were subjected to reverse-phase chromatography on a Zorbax ODS column and monitored at 254 nm. None of the PTH amino acids coelute with side-chain-protected PTH amino acid counterparts, although PTH-tosyl-histidine undergoes deprotection to PTH-histidine in the Edman degradation. A protected decapeptide attached to a chloromethylated polystyrene resin was degraded on a solid-phase sequencer in 16 h. The PTH amino acids resulting from the automated Edman degradation on the decapeptide were fully resolved and quantified in less than 3 h demonstrating that automated high-performance liquid chromatography can keep pace with both the automated sequencer and synthesizer which requires minimally 2–3 h for attachment of each residue to the growing peptide chain.  相似文献   

2.
多巴(3,4-1-dihydroxyphenylalanine,DOPA)是贻贝足丝粘附蛋白中的一种特殊的氨基酸,由酪氨酸经羟化后生成,与贻贝足丝粘附蛋白的强粘附性能具有直接联系.目前,已鉴定的多种贻贝足丝蛋白序列中均发现有不同含量的DOPA存在.蛋白中DOPA的定量检测对于了解DOPA在蛋白粘附中的作用以及粘附蛋白的...  相似文献   

3.
Proteins containing the post-translationally modified amino acid L-3,4-dihydroxyphenylalanine (DOPA) undergo autosclerotization as a means of assuring cohesive resilience in many structural matrices found in nature. To explore the chemical mechanism of sclerotization, we examined the oxidation products of relatively simple analogs of a peptidyl DOPA residue, such as N-acetylDOPA ethyl ester and N-acetyldopamide, together with those of several oligopeptides. Oxidation, induced by either of two catecholoxidases or by sodium periodate, resulted in the Lewis base catalyzed formation of derivatives of the unusual amino acid 3,4-dihydroxy-alpha,beta-dehydroDOPA (delta DOPA). The N-acetyl delta DOPA ethyl ester representative of this group of derivatives was characterized by NMR and uv spectroscopy. A variety of peptides developed analogous uv spectra upon oxidation. A similar reaction was observed upon oxidation of 3,4-dihydroxyphenylpropanoic (dihydrocaffeic) acid, but not after oxidation of N-acetyldopamine. Evidence is presented that this conversion is the result of a rearrangement of the DOPA quinone moiety to its delta DOPA tautomer, and that this tautomerization can be a dominant fate for peptidyl DOPA quinone, provided a Lewis base catalyst is available and competing reactions are minimized. Formation of delta DOPA in natural or synthetic polymers would increase the variety of crosslinks available to sclerotizing matrices. delta DOPA has been found in naturally occurring oligopeptides isolated by other workers from several marine species.  相似文献   

4.
While 20 canonical amino acids are used by most organisms for protein synthesis, the creation of cells that can use noncanonical amino acids (ncAAs) as additional protein building blocks holds great promise for preparing novel medicines and for studying complex questions in biological systems. However, only a small number of biosynthetic pathways for ncAAs have been reported to date, greatly restricting our ability to generate cells with ncAA building blocks. In this study, we report the creation of a completely autonomous bacterium that utilizes 3,4-dihydroxy-L-phenylalanine (DOPA) as its 21st amino acid building block. Like canonical amino acids, DOPA can be biosynthesized without exogenous addition and can be genetically incorporated into proteins in a site-specific manner. Equally important, the protein production yields of DOPA-containing proteins from these autonomous cells are greater than those from cells exogenously fed with 9 mM DOPA. The unique catechol moiety of DOPA can be used as a versatile handle for site-specific protein functionalizations via either oxidative coupling or strain-promoted oxidation-controlled cyclooctyne-1,2-quinone (SPOCQ) cycloaddition reactions. We further demonstrate the use of these autonomous cells in preparing fluorophore-labeled anti-human epidermal growth factor 2 (HER2) antibodies for the detection of HER2 expression on cancer cells.  相似文献   

5.
Abstract: An on-line microdialysis approach was developed to estimate changes in tyrosine hydroxylase activity in the locus ceruleus noradrenergic neurons of anesthetized rats by measuring the 3,4-dihydroxyphenylalanine (DOPA) acumulation in the extracellular fluid during perfusion of an aromatic amino acid decarboxylase inhibitor through a dialysis probe. The aromatic amino acid decarboxylase inhibitor used was difluoromethyl-DOPA, which was shown to be more stable than NSD 1015 or Ro 4-4602 in the perfusion fluid. A 1-h perfusion of a 10−4 mol/L of difluoromethyl-DOPA solution induced a linear increase in DOPA concentration in the locus ceruleus dialysates that achieved a steady state within 1 h. The identity of DOPA accumulated in dialysates during aromatic amino acid decarboxylase inhibition was confirmed by the disappearance of the chromatographic peak when DOPA formation was blocked by the administration of α-methyl- p -tyrosine. Systemic administration of the α2-antagonist piperoxane before difluoromethyl-DOPA perfusion markedly increased the DOPA concentration during both the accumulation and the steady-state periods, showing that the present technique is a suitable in vivo approach to monitor changes in tyrosine hydroxylase activity occurring in the locus ceruleus neurons.  相似文献   

6.
Phenylthiohydantoin (PTH) amino acids, the derivatives of amino acids liberated in the course of automated N-terminal sequence analysis of peptides and proteins, are most commonly identified by high-performance liquid chromatography. This communication describes an extension to the methodology for PTH amino acid identification which exploits thermospray liquid chromatography/mass spectrometry for use in the confirmation of PTH amino acid identifications previously made solely on the basis of retention times. Thermospray mass spectra of the 19 synthetic PTH amino acids corresponding to the residues commonly observed during N-terminal sequencing have been acquired. These spectra show strong signals for the protonated molecular ion, accompanied in several cases by ions produced by limited fragmentation of the amino acid side chain and/or the PTH ring system. A reverse-phase separation protocol has been adapted for use with thermospray. The method permits recognition of the protonated molecular ions of all the standard PTH amino acids at the 150-pmol level on the basis of signal-to-noise ratios of 10:1 or better with full scanning. The method has been tested on the N-terminal amino acid sequence analysis of 200 pmol of the standard protein beta-lactoglobulin A, and has been found useful in the study of selected side-products of the sequencing chemistry.  相似文献   

7.
C R?lz  M Pellegrini  D F Mierke 《Biochemistry》1999,38(20):6397-6405
Molecular models for the interaction of parathyroid hormone (PTH) with its G-protein-coupled receptors (PTH1 and PTH2) have been developed. The proposed ligand-receptor complex is based on experimental data from spectroscopic investigations of the hormone and receptor fragments as well as theoretical structure predictions based on homology analysis with proteins of known structure. From the insight afforded by the models, biochemical and pharmacological observations can be correlated with specific molecular or atomic interactions. The ligand selectivity of PTH2, specifically the lack of binding of His5-containing analogues, can be ascribed to unfavorable steric interactions (the binding pocket is markedly smaller in PTH2 than PTH1) as well as repulsive Coulombic forces between amino acids of like-charge (a positively charged H384 is located in the binding pocket in PTH2). The model of PTH1 suggests that the constitutive activity observed from the incorporation of a positively charged amino acid at position 223, found at the cytoplasmic end of TM2, is caused by a Coulombic attraction to E465, at the cytoplasmic end of TM7, leading to an association of TM2 and TM7 and thereby ligand-free activation. Additionally, a number of important interactions in the ligand-receptor complex are described along with predictions of the pharmacological profile which will result from specific modifications at these sites. In this regard, the models described here allow for atomic insight into the biochemical data currently available and allow targeting of future mutations to probe specific ligand/receptor interactions and thereby further our understanding of the functioning of this important hormone system.  相似文献   

8.
Intracellular concentrations of amino acids were determined in cells of Streptococcus lactis 133 during growth in complex, spent, and chemically defined media. Glutamic and aspartic acids represented the major constituents of the amino acid pool. However, organisms grown in spent medium or in defined medium supplemented with ornithine also contained unusually high levels of two additional amino acids. One of these amino acids was ornithine. The second compound exhibited properties of a neutral amino acid by coelution with valine from the amino acid analyzer. The compound did not, however, comigrate with valine or any other standard amino acid by two-dimensional thin-layer chromatography. The unknown amino acid was purified by paper and thin-layer chromatography, and its molecular structure was determined by 1H and 13C nuclear magnetic resonance spectroscopy. This new amino acid was shown to be N5-(1-carboxyethyl)-ornithine. The 14C-labeled compound was formed by cells of S. lactis 133 during growth in spent medium or defined medium containing [14C]ornithine. Formation of the derivative by resting cells required ornithine and the presence of a metabolizable sugar. N5-(1-Carboxyethyl)-ornithine was synthesized chemically from both poly-S-ornithine and (2S)-N2-carbobenzyloxy-ornithine as a 1:1 mixture of two diastereomers. The physical and chemical properties of the amino acid purified from S. lactis 133 were identical to those of one of the synthetic diastereomers. The bis-N-trifluoroacetyl-di-n-butyl esters of the natural and synthetic compounds generated identical gas chromatography-mass spectrometry spectra. A mechanism is suggested for the in vivo synthesis of N5-(1-carboxyethyl)-ornithine, and the possible functions of this new amino acid are discussed.  相似文献   

9.
1. Aromatic amino acid decarboxylase activities toward L-DOPA (L-3,4-dihydroxyphenylalanine), 5-HTP (5-hydroxytryptophan) and p-tyrosine in different tissues of the sclerotized and newly ecdysed cockroach were analyzed. 2. The ratios of enzyme activity with regard to L-DOPA and p-tyrosine varied considerably in the tissues and between the two different growth stages. 3. A DOPA decarboxylase and a p-tyrosine decarboxylase were separated by gel filtration and ion exchange chromatography. 4. The optimal pH requirement for both enzymes was 7.5 with the exception of the one decarboxylating 5-HTP. 5. The molecular weights of the cockroach brain DOPA decarboxylase and tyrosine decarboxylase were estimated to be 120,000 and 100,000, respectively. 6. Unlike the mammalian aromatic amino acid decarboxylase, the cockroach DOPA decarboxylase cannot be activated by a small amount of benzene. 7. An increase of over 50-fold of DOPA decarboxylase activity and a 50% reduction of tyrosine decarboxylase activity in the epidermal tissue of the newly ecdysed animals was observed. 8. In the fully sclerotized cockroach, a reversible endogenous inhibitor(s) of DOPA decarboxylase in the integument was observed, suggesting that the DOPA decarboxylase is suppressed in the epidermal tissues when ecdysis does not occur.  相似文献   

10.
Solid-phase Edman degradation of synthetic peptidyl-resins has been used advantageously to detect errors of deletion which might occur during Merrifield peptide synthesis. To facilitate complete quantitation of the resulting phenylthiohydantoin(PTH)-amino acids, the PTH derivatives of the following side chain-protected amino acid residues have been synthesized: Arg(Tos), Asp(OBzl), Cys(3,4-(CH3)2-Bzl), Glu(OBzl), Lys(2-ClZ), Ser(Bzl), Thr(Bzl), Tyr(2-BrZ), and Tyr(2,6-Cl2Bzl). For each derivative, a melting point, elemental analysis, and extinction coefficient were obtained. With these new compounds as HPLC standards, an unequivocal assignment and quantification of each side chain protected amino acid was possible. A quantitative analysis was performed for six model peptides with the general formula Ala-X-Leu-Y-Ala-Gly-NHCH2-resin (where X and Y represented different side chain-protected amino acyl residues). We have found solid-phase Edman degradation to be a useful aid for the characterization of peptides when they are used unpurified as synthetic antigens.  相似文献   

11.
J H Waite  A C Rice-Ficht 《Biochemistry》1987,26(24):7819-7825
Trematode parasites protect their eggs with a tough tanned eggshell. Eggshell precursor proteins are synthesized and stockpiled within the extensive vitellaria of the animal. A major eggshell precursor protein with an apparent molecular weight of 31,000 and pI of 7.4 was isolated from the vitellaria of Fasciola hepatica. This protein, which represents 6-7% of the total protein in mature Fasciola, is unique in containing rather high levels of the amino acid 3,4-dihydroxyphenylalanine (DOPA), i.e., 110 residues per 1000. Other prominent amino acids are glycine, aspartic acid, and lysine. A prominent DOPA-containing tryptic peptide derived from eggshell precursor protein has the sequence Gly-Gly-Gly-DOPA-Gly-Gly-DOPA-Gly-Lys. DOPA residues disappear during the maturation of the eggshell and by treatment in vitro with mushroom polyphenol oxidase. This disappearance may be related to the formation of cross-links in the eggshell protein.  相似文献   

12.
3,4-Dihydroxyphenyl-L-alanine (DOPA) is an unusual amino acid found in mussel adhesive proteins (MAPs) that is believed to lend adhesive characteristics to these proteins. In this paper, we describe a route for the conjugation of DOPA moieties to poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers. Hydroxyl end groups of PEO-PPO-PEO block copolymers were activated by N,N'-disuccinimidyl carbonate and then reacted with DOPA or its methyl ester with high coupling efficiencies from both aqueous and organic solvents. DOPA-modified PEO-PPO-PEO block copolymers were freely soluble in cold water, and dye partitioning and differential scanning calorimetry analysis of these solutions revealed that the copolymers aggregated into micelles at a characteristic temperature that was dependent on block copolymer composition and concentration in solution. Oscillatory rheometry demonstrated that above a block copolymer concentration of approximately 20 wt %, solutions of DOPA-modified PEO-PPO-PEO block copolymers exhibited sol-gel transitions upon heating. The gelation temperature could be tailored between approximately 23 and 46 degrees C by changing the composition, concentration, and molecular weight of the block copolymer. Rheological measurement of the bioadhesive interaction between DOPA-modified Pluronic and bovine submaxillary mucin indicated that DOPA-modified Pluronic was significantly more bioadhesive than unmodified Pluronic.  相似文献   

13.
Some widely used standard protocols for the separation of phenylthiohydantoin amino acid derivatives by reverse-phase gradient HPLC do not provide separation of the phenylthiohydantoin derivative of tryptophan (PTH-Trp) from diphenylurea (DPU), a by-product generated during Edman degradation of proteins in variable amounts. Furthermore, PTH-Trp is usually recovered in low yield under typical experimental conditions used with automated sequencing equipment. These factors may compromise the unambiguous assignment of tryptophan residues in automated protein sequence analysis, especially when sequencing is performed at high sensitivity. We devised a reverse-phase HPLC method which allows the separation of DPU and PTH-Trp and therefore the correct assignment of PTH-Trp. The method is based on a modification of the HPLC gradient used to elute and separate all PTH amino acids of interest. With Applied Biosystems Model 477A protein sequencers with on-line PTH amino acid identification, the correct assignment of tryptophan was consistent and reproducible even when sequencing at very high sensitivity (5 pmol).  相似文献   

14.
Abstract— The assay of aminotransferases, performed by solvent extraction of keto acids formed from labelled amino acids, has been modified to enhance the recovery of both aliphatic and aromatic keto acid products. The keto acids are first converted to their respective dinitrophenylhydrazones which are more completely extracted into less polar organic solvents. By this manoeuvre, both keto acid extraction is increased and the extraction of the precursor amino acid is reduced. Employing this technique, the kinetics of brain-stem γ-aminobutyric acid (GABA), tryptophan, 3,4-dihydroxyphenylalanine (DOPA) aminotransferases and brain-stem and liver tyrosine aminotransferases were examined. Brain-stem aminotransferases, particularly the aromatic amino acid transferases, have a higher affinity for both the amino acid and the keto acid when the aromatic keto acid, phenylpyruvate (0·8 mM), is employed as amino group acceptor, whereas maximal velocities for aminotransferase reactions are much greater when α-ketoglutarate (0·8 m m ) is the amino group acceptor. Brain-stem tyrosine aminotransferase exhibits a much lower affinity for tyrosine in the presence of either 0·8m m -α-ketoglutarate or 0·8 m m -phenylpyruvate than does liver tyrosine aminotransferase. p -Chlorophenylpyruvate and phenylpyruvate exhibit similar properties as amino group acceptors for brain-stem tryptophan aminotransferase. Cysteine inhibits tryptophan aminotransferase when phenylpyruvate is the amino group acceptor, in a manner which is competitive with the amino acid. Benzoylformate inhibits both tryptophan and DOPA aminotransferases when phenylpyruvate is the amino group acceptor, but this inhibition does not appear to be competitive with phenylpyruvate.  相似文献   

15.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY l-DOPA   总被引:3,自引:2,他引:1  
Abstract— A study has been made of the effect of a single intraperitoneal dose of l -DOPA on the in vivo metabolism of [14C]leucine and [14C]lysine by the brain, and on their uptake into brain protein. Administration of 500 mg DOPA/kg to 40-g rats raised the concentrations of several free amino acids; the only amino acid which underwent a statistically significant increment was alanine. Intracisternally-injected [U-14C]leucine was rapidly metabolized to other labelled compounds; DOPA administration did not influence significantly the rate of its metabolism. No similar metabolic change was observed after administering [U-14C]lysine intracisternally.
Incorporation of [14C]leucine and [14C]lysine into total brain protein was significantly reduced 45 min after DOPA administration. There was also depression of the uptake of labelled amino acid into a supernatant fraction, obtained by high speed centrifugation of the brain homogenate, and into brain microtubular protein (tubulin). Reduced amino-acid incorporation into brain proteins observed 45 min after l -DOPA injection coincided with extensive disaggregation of brain polyribosomes. At 120 min after DOPA treatment, disaggregation was no longer significant and there was a smaller depression in labelled amino aicd incorporation, which disappeared completely 240 min after l -DOPA injection. It is concluded that disaggregation of brain polysomes following DOPA treatment is an accurate reflection of a change in the intensity of brain protein synthesis in vivo.  相似文献   

16.
Sequencing of phosphoserine-containing peptides yields normally no identifiable PTH-derivatives at those positions where phosphoserine is located. Here a new method is described which allows identification of the position of phosphoserine by chemical modification just before sequence analysis. In a one-step microbatch reaction, phosphoserine present in the intact peptide can be transformed quantitatively into stable derivatives such as beta-methylaminoalanine (MAA), S-ethanolcysteine or S-ethylcysteine. These derivatives are detectable during microsequencing with less than 100 pmol peptide using an Applied Biosystems gas-phase sequencer equipped with an on-line PTH amino acid analyzer.  相似文献   

17.
Ten phenylthiohydantoin (PTH) amino acids possessing allyl (Al) or allyloxycarbonyl (Aloc) side-chain-protecting groups have been characterized by high-performance liquid chromatography for use in Edman degradation sequence analysis. Optimized separation of side-chain-protected and -unprotected PTH amino acids was achieved on a C-18 reversed-phase column with a two-step gradient spanning 32 min. Five of the side-chain-protected amino acids [Cys(Al), Cys(Aloc), Lys(Aloc), Thr(Aloc), Tyr(Al)] were completely stable to the conditions of PTH derivatization, four [Asp(OAl), Arg(Aloc)2, Glu(OAl), Ser(Aloc)] were partially deprotected during PTH derivatization, and one [His(Aloc)] was completely deprotected during PTH derivatization. All allyl-based derivatives were well resolved from their side-chain-unprotected counterparts. Studies on the stability to piperidine treatment showed Asp(OAl), Cys(Al), Glu(OAl), Lys(Aloc), Thr(Aloc), and Tyr(Al), and possibly Arg(Aloc)2 and Ser(Aloc), to be suitable for peptide synthesis by 9-fluorenylmethoxycarbonyl (Fmoc)-based chemistry. Edman degradation of Al and Aloc side-chain-protected Conus geographus Lys9-alpha-conotoxin GI synthesized on 4-methylbenzhydrylamine-copoly(styrene-1%-DVB)-resin demonstrated the usefulness of these derivatives for solid-phase preview sequence analysis.  相似文献   

18.
We report the first direct method for the identification of the vitamin K-dependent Ca2+ binding amino acid, gamma-carboxyglutamic acid (Gla), in the sequencing of proteins. The carboxyl groups on the protein are first converted to methyl esters with methanolic HCl, a procedure that reduces the polarity of the resulting ATZ derivative of dimethyl-Gla and so greatly improves its extraction from the polybrene-treated glass fiber filter. After conversion to the PTH derivative in methanolic HCl, the resulting dimethyl ester of PTH Gla can be identified directly by a simple modification of the standard HPLC program for the separation of PTH derivatives. This methylation procedure can be used to identify Gla residues in proteins bound to PVDF membranes, as we demonstrate for matrix Gla protein and prothrombin, and to evaluate directly the degree of partial gamma-carboxylation at given glutamic acid residues, as we demonstrate for the 50% gamma-carboxylation of residue 17 in human bone Gla protein.  相似文献   

19.
Specific degenerate codons in the amino-terminal region of a synthetic human parathyroid hormone (PTH) gene exerted dramatic effects on both products and yield of expression of this 84-amino acid polypeptide in Escherichia coli. With adenine-rich degenerate codons constituting the PTH-(1-5) region, intact PTH has been expressed as the only PTH product at 6.5 mg/liter. In contrast, with guanine-rich degenerate codons, the predominent product was analogue PTH-(8-84). Use of cytosine- or thymine-rich degenerate codons generated only a small amount of immunoreactive product (0.2 mg/l). With the amino terminal region reconstituted with adenine-rich degenerate codons, the mid and carboxyl regions of the synthetic gene were also reconstructed to imitate the E. coli-favored codon degeneracy. Expression yielded the intact PTH at 20 mg/liter. Gel electrophoresis and Western blots, with antibodies specific to the amino or carboxyl terminus of PTH, indicated only a single PTH-related polypeptide, with the same mobility as a synthetic intact PTH sample. Amino acid sequencing, composition analysis, mass spectrometry, and the adenylate cyclase bioassays confirmed the purified product as the processed intact PTH.  相似文献   

20.
Glutamate is implicated in neuronal cell death. Exogenously applied DOPA by itself releases neuronal glutamate and causes neuronal cell death in in vitro striatal systems. Herein, we attempt to clarify whether endogenous DOPA is released by 10 min transient ischemia due to four-vessel occlusion during rat striatal microdialysis and, further, whether DOPA, when released, functions to cause glutamate release and resultant delayed neuronal cell death. Ischemia increased extracellular DOPA, dopamine, and glutamate, and elicited neuronal cell death 96 h after ischemic insult. Inhibition of striatal L-aromatic amino acid decarboxylase 10 min before ischemia increased markedly basal DOPA, tripled glutamate release with a tendency of decrease in dopamine release by ischemia, and exaggerated neuronal cell death. Intrastriatal perfusion of 10-30 nM DOPA cyclohexyl ester, a competitive DOPA antagonist, 10 min before ischemia, concentration-dependently decreased glutamate release without modification of dopamine release by ischemia. At 100 nM, the antagonist elicited a slight ceiling effect on decreases in glutamate release by ischemia and protected neurons from cell death. Glutamate was released concentration-dependently by intrastriatal perfusion of 0.3-1 mM DOPA and stereoselectively by 0.6 mM DOPA. The antagonist elicited no hypothermia during and after ischemia. Endogenously released DOPA is an upstream causal factor for glutamate release and resultant delayed neuronal cell death by brain ischemia in rat striata. DOPA antagonist has a neuroprotective action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号