首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Pure hair and nail ectodermal dysplasia (PHNED) comprises a heterogeneous group of rare heritable disorders characterized by brittle hair, hypotrichosis, onychodystrophy and micronychia. Autosomal recessive (AR) PHNED has previously been associated with mutations in either KRT85 or HOXC13 on chromosome 12p11.1-q14.3. We investigated a consanguineous Pakistani family with AR PHNED linked to the keratin gene cluster on 12p11.1 but without detectable mutations in KRT85 and HOXC13. Whole exome sequencing of affected individuals revealed homozygosity for a rare c.821T>C variant (p.Phe274Ser) in the KRT74 gene that segregates AR PHNED in the family. The transition alters the highly conserved Phe274 residue in the coil 1B domain required for long-range dimerization of keratins, suggesting that the mutation compromises the stability of intermediate filaments. Immunohistochemical (IHC) analyses confirmed a strong keratin-74 expression in the nail matrix, the nail bed and the hyponychium of mouse distal digits, as well as in normal human hair follicles. Furthermore, hair follicles and epidermis of an affected family member stained negative for Keratin-74 suggesting a loss of function mechanism mediated by the Phe274Ser substitution. Our observations show for the first time that homozygosity for a KRT74 missense variant may be associated with AR PHNED. Heterozygous KRT74 mutations have previously been associated with autosomal dominant woolly hair/hypotrichosis simplex (ADWH). Thus, our findings expand the phenotypic spectrum associated with KRT74 mutations and imply that a subtype of AR PHNED is allelic with ADWH.  相似文献   

2.
Wasif N  Naqvi SK  Basit S  Ali N  Ansar M  Ahmad W 《Human genetics》2011,129(4):419-424
Autosomal dominant woolly hair (ADWH) is an inherited condition of tightly curled and twisted scalp hair. Recently, a mutation in human keratin-74 (KRT74) gene has been shown to cause this form of hereditary hair disorder. In the present study, we have described two families (A and B) having multiple individuals affected with autosomal dominant form of hair loss disorders. In family A, 10 individuals showed ADWH phenotype while in the family B, 14 individuals showed hypotrichosis of the scalp. Genotyping using polymorphic microsatellite markers showed linkage of both the families to type II keratin gene cluster on the chromosome 12q12-14.1. Mutation analysis of the KRT74 gene identified two novel mutations in the affected individuals of the families. The sequence analysis revealed a splice acceptor site mutation (c.IVS8-1G>A) in family A and a missense variant (c.1444G>A, p.Asp482Asn) in family B. Mutations identified in the present study extend the body of evidence implicating the KRT74 gene in the pathogenesis of autosomal dominant hair loss disorders.  相似文献   

3.
Hereditary hypotrichosis is a heterogeneous group of inherited hair loss disorders characterized by diffused or localized thinning or absence of hair affecting scalp, eyebrows and eyelashes, and other body parts. Over the past few years, at least four autosomal dominant and six autosomal recessive forms of hypotrichosis have been described. All these ten forms of hypotrichosis have been mapped on different human chromosomes and the corresponding genes have been identified in most of these cases. In the present study, we have described a six-generation Pakistani consanguineous family with an autosomal recessive transmission of hereditary hypotrichosis. All the five affected individuals of the family showed complete absence of scalp hair and sparse eyebrows and eyelashes. They were born with complete absence of scalp hairs. Facial hair of beard and mustaches were present in all the affected adult male individuals. Papules were observed only on scalp of the affected individuals. A scalp biopsy from an affected individual showed markedly reduced number of hair follicles. Human genome scan using polymorphic microsatellite markers mapped the disease locus on chromosome 7p21.3–p22.3, flanked by markers D7S1532 and D7S3047. A maximum two-point LOD score of 4.74 (θ = 0.00) was obtained at marker D7S481. The linkage interval spans 15.69 cM, which corresponds to 6.59 Mb according to the sequence-based physical map (Build 36.2). Mutation analysis of five potential candidate genes (GNA12, FOXK1, DAGLB, ZNF12, ACTB), located in the linkage interval, did not reveal any functional sequence variant.  相似文献   

4.
Autosomal recessive hypotrichosis (LAH3) is a rare hair disorder characterized by sparse hair on scalp and the rest of the body of affected individuals. Recently mutations in a G protein-coupled receptor gene, P2RY5, located at LAH3 locus, have been reported in several families with autosomal recessive hypotrichosis simplex and woolly hair. For the present study, 22 Pakistani families with autosomal recessive hypotrichosis were enrolled. Genotyping using microsatellite markers linked to three autosomal recessive forms of hypotrichosis (LAH1, LAH2, LAH3) showed the linkage of 2 families to the LAH2 locus and 14 to the LAH3 locus. The remaining 6 families were not linked to any of the three loci. Families linked to LAH3 locus were further subjected to screening of the P2RY5 gene with direct DNA sequencing. Three previously reported variants, c.69insCATG (p.24insHfs52), c.188A > T (p.D63V) and c.565G > A (p.E189K) were observed in eight families. Four novel nonsynonymous sequence variants, c.8G > C (p.S3T), c.36insA (p.D13RfsX16), c.160insA (p.N54TfsX58) and c.436G > A (p.G146R) were found to segregate within six families. Z. Azeem, M. Jelani, G. Naz, M. Tariq, N. Wasif, S. Kamran-ul-Hassan Naqvi contributed equally to this work.  相似文献   

5.
Autosomal recessive hypotrichosis is a rare form of human genetic disorder characterized by sparse to absent hair on scalp and rest of the body of affected individuals. Over the past few years at least five autosomal recessive forms of hypotrichosis loci have been mapped on different human chromosomes. In the present study, we report localization of another novel autosomal recessive hypotrichosis locus on human chromosome 10q11.23–22.3 in a four generation consanguineous Pakistani family. All the four patients in the family showed typical features of hereditary hypotrichosis including sparse hair on the scalp and rest of the body. Human genome scan using highly polymorphic microsatellite markers mapped the disease locus to a large region on chromosome 10. This novel locus maps to 29.81 cM (28.5 Mb) region, flanked by markers D10S538 and D10S2327 on chromosome 10q11.23–22.3. A maximum multipoint LOD score of 3.26 was obtained with several markers in this region. DNA sequence analysis of exons and splice-junction sites of four putative candidate genes (P4HA1, ZNF365, ZMYND17, MYST4), located in the linkage interval, were sequenced but were negative for functional sequence variants.  相似文献   

6.
Osteogenesis imperfecta (OI) is the most frequently occurring congenital disorder with an increased fracture rate and systemic skeletal involvement. The vast majority of patients have an autosomal dominant form of OI resulting from a mutation in one of the two type I collagen genes COL1A1 or COL1A2. Since 2006, eight genes for autosomal recessive forms of the disorder have been identified, as well as one additional gene for autosomal dominant OI. Our knowledge concerning molecular pathophysiology has been substantially broadened, such that the paradigm of OI as a pure ??collagenopathy?? no longer applies and the clinical classification system will have to be revised. Standard therapy for the more severe forms of OI comprises intravenous administration of bisphosphonates. Additional elements of a multimodal therapeutic concept include surgical intervention for bone deformities or fractures and physiotherapy.  相似文献   

7.
Mutations in lipase H (LIPH) and lysophosphatidic acid receptor 6 (LPAR6), which are essential for the lysophosphatidic acid (LPA) signalling pathway, are associated with hypotrichosis and wooly hair in humans. Mutations in LPAR6 and keratin 71 (KRT71), result in unusual fur growth and hair structure in several cat breeds (Cornish Rex, Devon Rex and Selkirk Rex). Here, we performed target sequencing of the LIPH, LPAR6 and KRT71 genes in six cat breeds with specific hair-growth phenotypes. A LIPH genetic variant (LIPH:c.478_483del; LIPH:p.Ser160_Gly161del) was found in Ural Rex cats with curly coats from Russia, but was absent in all other cat breeds tested. In silico three-dimensional analysis of the LIPH mutant protein revealed a contraction of the α3-helix structure in the enzyme phospholipid binding site that may affect its activity.  相似文献   

8.
Ichthyosis with confetti (IWC) is an autosomal dominant congenital ichthyosis also known as ichthyosis variegata or congenital reticular ichthyosiform erythroderma. It manifests at birth with generalized ichthyosiform erythroderma or with a collodion baby picture. The erythrodermic and ichthyotic phenotype persists during life and its severity may modify. However, the hallmark of the disease is the appearance, in childhood or later in life, of healthy skin confetti-like spots, which increase in number and size with time. IWC is a very rare genodermatosis, with a prevalence <1/1,000,000 and only 40 cases reported worldwide. The most important associated clinical features include ear deformities, mammillae hypoplasia, palmoplantar keratoderma, hypertrichosis and ectropion. IWC is due to dominant negative mutations in the KRT10 and KRT1 genes, encoding for keratins 10 and keratin 1, respectively. In this context, healthy skin confetti-like spots represent “repaired” skin due to independent events of reversion of keratin gene mutations via mitotic recombination. In most cases, IWC clinical suspicion is delayed until the detection of white skin spots. Clinical features, which may represent hint to the diagnosis of IWC even before appearance of confetti-like spots, include ear and mammillae hypoplasia, the progressive development of hypertrichosis and, in some patients, of adherent verrucous plaques of hyperkeratosis. Altogether the histopathological finding of keratinocyte vacuolization and the nuclear staining for keratin 10 and keratin 1 by immunofluorescence are pathognomonic. Nevertheless, mutational analysis of KRT10 or KRT1 genes is at present the gold standard to confirm the diagnosis. IWC has to be differentiated mainly from congenital ichthyosiform erythroderma. Differential diagnosis also includes syndromic ichthyoses, in particular Netherton syndrome, and the keratinopathic ichthyoses. Most of reported IWC cases are sporadic, but familial cases with autosomal dominant mode of inheritance have been also described. Therefore, knowledge of the mutation is the only way to properly counsel the couples. No specific and satisfactory therapy is currently available for IWC. Like for other congenital ichthyoses, topical treatments (mainly emollients and keratolytics) are symptomatic and offer only temporary relief. Among systemic treatments, retinoids, in particular acitretin, improve disease symptoms in most patients. Although at present there is no curative therapy for ichthyoses, treatments have improved considerably over the years and the best therapy for each patient is always the result of both physician and patient efforts.  相似文献   

9.
Monilethrix is a rare autosomal dominant disease characterized by hair fragility and follicular hyperkeratosis. Mutations in the human basic hair keratins hHb1 and hHb6 have recently been reported in this disease. Twelve families and sporadic cases were clinically diagnosed with monilethrix and were available for the study. The gene segment encoding the helix termination motif region of keratin hHb6 was PCR amplified and sequenced. Mutations were recognized in 6 families. Four families had the previously described mutations, Glu413Lys and Glu413Asp. In 2 unrelated families, a novel mutation, Glu402Lys, was identified. No clear association was found between the severity of the phenotype and the mutation carried. Furthermore, heterozygous members of the same family had variable degrees of hair and skin involvement. Homozygous patients identified in one large consanguineous family were more severely affected. Other genetic or environmental factors may also play a role in monilethrix.  相似文献   

10.
Ali G  Chishti MS  Raza SI  John P  Ahmad W 《Human genetics》2007,121(3-4):319-325
Hereditary hypotrichosis is a rare autosomal recessive disorder characterized by sparse hair on scalp and rest of the body of affected individuals. Two forms of such hypotrichosis LAH and AH have been mapped on chromosome 18q12.1 and 3q27, respectively. Mutations in desmogelin 4 (DSG4) gene have been reported to underlie LAH. Recently, a deletion mutation in Lipase H (LIPH) gene, located at AH locus, has been identified in two ethnic groups of Russian population. In the present study, a four generation Pakistani family with AH phenotype has been mapped to chromosome 3q27. Sequence analysis of candidate gene LIPH revealed a novel five base pair deletion mutation (c.346–350delATATA) in exon 2 of the gene leading to frameshift and downstream premature termination codon. The mutation reported in the family, presented here, is the second mutation identified in LIPH gene. The identification of a genetic defect in LIPH suggests that this enzyme regulates hair growth.  相似文献   

11.
Monilethrix is a rare dominant hair disease characterized by beaded or moniliform hair which results from the periodic thinning of the hair shaft and shows a high propensity to excess weathering and fracturing. Several cases of monilethrix have been linked to the type II keratin gene cluster on chromosome 12q13 and causative heterozygous mutations of a highly conserved glutamic acid residue (Glu 410 Lys and Glu 410 Asp) in the helix termination motif of the type II hair keratin hHb6 have recently been identified in monilethrix patients of two unrelated families. In the present study, we have investigated two further unrelated monilethrix families as well as a single case. Affected members of one family and the single patient exhibited the prevalent hHb6 Glu 410 Lys mutation. In the second family, we identified in affected individuals a lysine substitution of the corresponding glutamic acid residue, Glu 403, in the type II hair keratin hHb1, suggesting that this site represents a mutational hotspot in these highly related type II hair keratins. Both hHb1 and hHb6 are largely coexpressed in cortical trichocytes of the hair shaft. This indicates that monilethrix is a disease of the hair cortex. Received: 24 June 1997 / Accepted: 30 July 1997  相似文献   

12.
13.
Posterior microphthalmia (PM) is a relatively rare autosomal recessive condition with normal anterior segment and small posterior segment resulting in high hyperopia and retinal folding. It is an uncommon subtype of microphthalmia that has been mostly reported to coexist with several other ophthalmic conditions and to occur in sporadic cases. The membrane-type frizzled-related protein (MFRP) is the only gene so far reported implicated in autosomal recessive, non-syndromic and syndromic forms of PM. Here, we performed a clinical and genetic analysis using six consanguineous families ascertained from different regions of Tunisia and affected with non-syndromic PM that segregates as an autosomal recessive trait. To identify the disease-causing defect in these families, we first analysed MFRP gene, then some candidate genes (CHX10, OPA1, MITF, SOX2, CRYBB1-3 and CRYBA4) and loci (MCOP1, NNO1 and NNO2) previously implicated in different forms of microphthalmia. After exclusion of these genes and loci, we performed a genome-wide scan using a high density single nucleotide polymorphism (SNP) array 50 K in a large consanguineous pedigree. SNP genotyping revealed eight homozygous candidate regions on chromosomes 1, 2, 3, 6, 15, 17 and 21. Linkage analysis with additional microsatellite markers only retained the 2q37.1 region with a maximum LOD score of 8.85 obtained for D2S2344 at θ = 0.00. Further investigations are compatible for linkage of four more families to this region with a refined critical interval of 2.35 Mb. The screening of five candidate genes SAG, PDE6D, CHRND, CHRNG and IRK13 did not reveal any disease-causing mutation.  相似文献   

14.
Naegeli-Franceschetti-Jadassohn syndrome (NFJS) and dermatopathia pigmentosa reticularis (DPR) are two closely related autosomal dominant ectodermal dysplasia syndromes that clinically share complete absence of dermatoglyphics (fingerprint lines), a reticulate pattern of skin hyperpigmentation, thickening of the palms and soles (palmoplantar keratoderma), abnormal sweating, and other subtle developmental anomalies of the teeth, hair, and skin. To decipher the molecular basis of these disorders, we studied one family with DPR and four families with NFJS. We initially reassessed linkage of NFJS/DPR to a previously established locus on 17q11.2-q21. Combined multipoint analysis generated a maximal LOD score of 8.3 at marker D17S800 at a recombination fraction of 0. The disease interval was found to harbor 230 genes, including a large cluster of keratin genes. Heterozygous nonsense or frameshift mutations in KRT14 were found to segregate with the disease trait in all five families. In contrast with KRT14 mutations affecting the central alpha -helical rod domain of keratin 14, which are known to cause epidermolysis bullosa simplex, NFJS/DPR-associated mutations were found in a region of the gene encoding the nonhelical head (E1/V1) domain and are predicted to result in very early termination of translation. These data suggest that KRT14 plays an important role during ontogenesis of dermatoglyphics and sweat glands. Among other functions, the N-terminal part of keratin molecules has been shown to confer protection against proapoptotic signals. Ultrastructural examination of patient skin biopsy specimens provided evidence for increased apoptotic activity in the basal cell layer where KRT14 is expressed, suggesting that apoptosis is an important mechanism in the pathogenesis of NFJS/DPR.  相似文献   

15.
Congenital atrichia is a rare autosomal recessive disorder of hair development, characterized by complete loss of hair shortly after birth. Evidence of linkage to chromosome 8p12 has been established, implicating the human homolog of the mouse hairless (hr) gene as a candidate gene. We have previously identified missense mutations in families with congenital atrichia. Here, we report the first deletion mutation (2147del C) in exon 9 of the human hairless gene leading to a frameshift and downstream premature termination codon in five Palestinian families of Arab origin. Received: 31 July 1998 / Accepted: 31 August 1998  相似文献   

16.
Epidermolysis bullosa simplex (EBS) is a hereditary blistering disease affecting the skin and mucous membranes. It has been reported in humans, cattle, buffaloes and dogs, but so far not in cats. In humans, EBS is most frequently caused by variants in the KRT5 or KRT14 genes. Here, we report a case of feline epidermolysis bullosa simplex and describe the causative genetic variant. An 11-month-old male domestic shorthair cat presented with a history of sloughed paw pads and ulcerations in the oral cavity and inner aspect of the pinnae, starting a few weeks after birth. Clinical and histopathological findings suggested a congenital blistering disease with a split formation within the basal cell layer of the epidermis and oral mucous epithelium. The genetic investigation revealed a homozygous nonsense variant in the KRT14 gene (c.979C>T, p.Gln327*). Immunohistochemistry showed a complete absence of keratin 14 staining in all epithelia present in the biopsy. To the best of our knowledge, this is the first report of feline EBS, and the first report of a spontaneous pathogenic KRT14 variant in a non-human species. The homozygous genotype in the affected cat suggests an autosomal recessive mode of inheritance.  相似文献   

17.
Recessive male-determining genes   总被引:1,自引:0,他引:1  
The autosomal dominant gene polled (P) causes hornlessness in goats. Chromosomal females (XX) that are P/P homozygotes develop testes or ovotestes. Thus with respect to its testis-determining properties, P or a closely linked gene acts as an autosomal recessive.Polled intersex goats are H-Y+. This finding is consistent with the view that there may be a cluster of testis-determining H-Y genes on the Y chromosome, and that translocation of a subcritical portion of these genes may generate a recessive mode of sex determination.  相似文献   

18.
Emery-Dreifuss muscular dystrophy (EDMD) is a rare neuromuscular disorder characterized by early contractures, slowly progressive muscular weakness, and life-threatening heart conduction disturbances that can develop into a cardiomyopathy. There is wide intrafamilial and interfamilial clinical variability. Genetically, X-linked recessive (EMD1), autosomal dominant (EMD2), and autosomal recessive (EMD3) forms can be distinguished, which are associated with mutations in the STA, LMNA, SYNE1, SYNE2, and FHL1 genes. Only approximately 46% of unrelated EDMD patients have a mutation in the genes mentioned above, pointing to further genetic heterogeneity in EDMD.  相似文献   

19.
Summary Epidermolytic palmoplantar keratoderma (EPPK) (Vörner-Unna-Thost) is an autosomal dominantly inherited skin disease of unknown etiology characterized by diffuse severe hyperkeratosis of the palms and soles and, histologically, by cellular degeneration. We have mapped a gene for EPPK to chromosome 17q11–q23, with linkage analysis using microsatellite DNA-polymorphisms, in a single large family of 7 generations. A maximum lod score of z=6.66 was obtained with the probe D17S579 at a recombination fraction of =0.00. This locus maps to the same region as the type I (acidic) keratin gene cluster. Keratins, members of the intermediate filament family, the major proteins of the cytoskeleton in epidermis, are differentially expressed in a tissue-specific manner. One acidic keratin, keratin 9 (KRT9), is expressed only in the terminally differentiated epidermis of palms and soles. The KRT9 gene has not yet been cloned; however, since the genes for most acidic keratins are clustered, it is highly probable that it too will map to this region. We therefore propose KRT9 as the candidate gene for EPPK.  相似文献   

20.
Epidermolytic palmoplantar keratoderma (EPPK) is the most frequent form of such keratodermas. It is inherited in an autosomal dominant pattern and is clinically characterized by diffuse yellowish thickening of the skin on the palms and soles with erythematous borders during the first weeks or months after birth. EPPK is generally caused by mutations of the KRT9 gene. More than 26 KRT9 gene mutations responsible for EPPK have been described (Human Intermediate Filament Database, www.interfil.org), and many of these variants are located within the highly-conserved coil 1A region of the α-helical rod domain of keratin 9. Unfortunately, there is no satisfactory treatment for EPPK. Thus, prenatal molecular diagnosis or pre-pregnancy diagnosis is crucial and benefits those affected who seek healthy descendants. In the present study, we performed amniotic fluid-DNA-based prenatal testing for three at-risk pregnant EPPK women from three unrelated southern Chinese families who carried the KRT9 missense mutations p.Arg163Trp and p.Arg163Gln, and successfully helped two families to bear normal daughters. We suggest that before the successful application of preimplantation genetic diagnosis (PGD), and noninvasive prenatal diagnosis of EPPK that analyzes fetal cells or cell-free DNA in maternal blood, prenatal genetic diagnosis by amniocentesis or chorionic villus sampling (CVS) offers a quite acceptable option for EPPK couples-at-risk to avoid the birth of affected offspring, especially in low- and middle-income countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号