首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosomal imbalances are the major cause of mental retardation (MR). Many of these imbalances are caused by submicroscopic deletions or duplications not detected by conventional cytogenetic methods. Microarray-based comparative genomic hybridization (array-CGH) is considered to be superior for the investigation of chromosomal aberrations in children with MR, and has been demonstrated to improve the diagnostic detection rate of these small chromosomal abnormalities. In this study we used 1 Mb genome-wide array-CGH to screen 48 children with MR and congenital malformations for submicroscopic chromosomal imbalances, where the underlying cause was unknown. All children were clinically investigated and subtelomere FISH analysis had been performed in all cases. Suspected microdeletion syndromes such as deletion 22q11.2, Williams-Beuren and Angelman syndromes were excluded before array-CGH analysis was performed. We identified de novo interstitial chromosomal imbalances in two patients (4%), and an interstitial deletion inherited from an affected mother in one patient (2%). In another two of the children (4%), suspected imbalances were detected but were also found in one of the non-affected parents. The yield of identified de novo alterations detected in this study is somewhat less than previously described, and might reflect the importance of which selection criterion of patients to be used before array-CGH analysis is performed. However, array-CGH proved to be a high-quality and reliable tool for genome-wide screening of MR patients of unknown etiology.  相似文献   

2.
Novel microdeletion syndromes detected by chromosome microarrays   总被引:2,自引:1,他引:1  
  相似文献   

3.
In addition to the widely used cytogenetic standard approaches, molecular methods are being increasingly used in prenatal diagnostics. While molecular cytogenetics, e.g., fluorescence in situ hybridization (FISH), has been used for many years in invasive prenatal diagnostics, array-based diagnostics are only now being implemented in this field. FISH is prenatally applied for determination of size of a mosaic cell clone, for exclusion of a microdeletion, or for further clarification of structural chromosomal aberrations. Array CGH (comparative genomic hybridization) is used more conservatively in prenatal diagnostics, mostly for further clarification in sonographically abnormal fetuses and to diagnose breakpoints in cases with proven chromosomal changes. In the future, array CGH will gain further importance, but already provides a valuable supplement to the diagnostic approaches of the cytogenetic and the molecular-based methods.  相似文献   

4.
5.
The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions.  相似文献   

6.
High resolution oligonucleotide array Comparative Genome Hybridization technology (array-CGH) has greatly assisted the recognition of the 1p36 contiguous gene deletion syndrome. The 1p36 deletion syndrome is considered to be one of the most common subtelomeric microdeletion syndromes and has an incidence of ~1 in 5000 live births, while respectively the "pure" 1p36 microduplication has not been reported so far. We present seven new patients who were referred for genetic evaluation due to Developmental Delay (DD), Mental Retardation (MR), and distinct dysmorphic features. They all had a wide phenotypic spectrum. In all cases previous standard karyotypes were negative. Array-CGH analysis revealed five patients with interstitial 1p36 microdeletion (four de novo and one maternal) and two patients with de novo reciprocal duplication of different sizes. These were the first reported "pure" 1p36 microduplication cases so far. Three of our patients carrying the 1p36 microdeletion syndrome were also found to have additional pathogenetic aberrations. These findings (del 3q27.1; del 4q21.22-q22.1; del 16p13.3; dup 21q21.2-q21.3; del Xp22.12) might contribute to the patients' severe phenotype, acting as additional modifiers of their clinical manifestations. We review and compare the clinical and array-CGH findings of our patients to previously reported cases with the aim of clearly delineating more accurate genotype-phenotype correlations for the 1p36 syndrome that could allow for a more precise prognosis.  相似文献   

7.
The term “molecular karyotyping” refers to the genome-wide analysis of copy number variations using arrays that cover the genome with genomic markers with varying density. Currently the main application is the investigation of patients with otherwise unexplained mental retardation and multiple congenital anomalies. Studies of such patients who remained without etiological diagnosis after conventional karyotyping, subtelomeric screening, and targeted molecular–cytogenetic studies for well-known microdeletion syndromes revealed chromosomal microaberrations in about 10% of cases and allowed the delineation of several new microdeletion and microduplication syndromes. Nevertheless, because of the large number of copy number polymorphisms, interpretation of unique findings needs thorough consideration.  相似文献   

8.
Segmental duplications (SDs) are a class of long, repetitive DNA elements whose paralogs share a high level of sequence similarity with each other. SDs mediate chromosomal rearrangements that lead to structural variation in the general population as well as genomic disorders associated with multiple congenital anomalies, including the 7q11.23 (Williams–Beuren Syndrome, WBS), 15q13.3, and 16p12.2 microdeletion syndromes. Population-level characterization of SDs has generally been lacking because most techniques used for analyzing these complex regions are both labor and cost intensive. In this study, we have used a high-throughput technique to genotype complex structural variation with a single molecule, long-range optical mapping approach. We characterized SDs and identified novel structural variants (SVs) at 7q11.23, 15q13.3, and 16p12.2 using optical mapping data from 154 phenotypically normal individuals from 26 populations comprising five super-populations. We detected several novel SVs for each locus, some of which had significantly different prevalence between populations. Additionally, we localized the microdeletion breakpoints to specific paralogous duplicons located within complex SDs in two patients with WBS, one patient with 15q13.3, and one patient with 16p12.2 microdeletion syndromes. The population-level data presented here highlights the extreme diversity of large and complex SVs within SD-containing regions. The approach we outline will greatly facilitate the investigation of the role of inter-SD structural variation as a driver of chromosomal rearrangements and genomic disorders.  相似文献   

9.
Individuals with mental disabilities are a heterogeneous group, mainly when we consider the etiology of mental retardation (MR). Recent advances in molecular genetics techniques have enabled us to unveil more about the molecular basis of several genetic syndromes associated with MR. In this study, we surveyed 85 institutionalized individuals with severe MR, 38 males and 47 females, by two molecular techniques, to detect CGG amplifications in the FMR1 gene. No FRAXA mutations were found in the FMR1 gene, reinforcing the low prevalence of Fragile X syndrome among institutionalized individuals with severe MR. We considered the PCR protocol used adequate for screening males with mental retardation of unknown etiology. The use of the Southern blot is still necessary for the decisive diagnosis of the Fragile X syndrome. To exclude chromosomal abnormalities associated with MR as a possible cause of the phenotype in these individuals, G-banded chromosome analysis was performed in all patients and 7.3% of chromosomal aberrations were found. Our results are similar to those reported previously and point to the necessity of expanding the molecular investigation toward other causes of MR, such as subtle chromosomal rearrangements, as suggested recent by a combination of fluorescence in situ hybridization (FISH) and PCR studies.  相似文献   

10.
D. Gubb  S. McGill    M. Ashburner 《Genetics》1988,119(2):377-390
A screen is described that will select for breakpoints within a restricted chromosomal region in Drosophila. The aberrations recovered can be used to construct chromosomes carrying synthetic duplications and deletions. Such chromosomes have applications in the mapping of complementation groups at both the genetic and molecular level. In particular, breakpoints recovered after P element hybrid dysgenesis tend to be associated with P element insertion sites. Such aberration breakpoints can be genetically mapped, as synthetic deletions, and then used as transposon-tagged sites for the recovery of genomic clones.  相似文献   

11.
The genetic features of B-cell chronic lymphocytic leukemia (CLL) are currently being reassessed by molecular cytogenetic techniques such as fluorescence in situ hybridization (FISH). Conventional cytogenetic studies by chromosome banding are difficult in CLL mainly because of the low in vitro mitotic activity of the tumor cells, which leads to poor quantity and quality of metaphase spreads. Molecular genetic analyses are limited because candidate genes are known for only a few chromosomal aberrations that are observed in CLL. FISH was found to be a powerful tool for the genetic analysis of CLL as it overcomes both the low mitotic activity of the CLL cells and the lack of suitable candidate genes for analysis. Using FISH, the detection of chromosomal aberrations can be performed at the single cell level in both dividing and non-dividing cells, thus circumventing the need of metaphase preparations from tumor cells. Probes for the detection of trisomies, deletions and translocation breakpoints can be applied to the regions of interest with the growing number of clones available from genome-wide libraries. Using the interphase cytogenetic FISH approach with a disease specific set of probes, chromosome aberrations can be found in more than 80% of CLL cases. The most frequently observed abnormalities are losses of chromosomal material, with deletions in band 13q14 being the most common, followed by deletions in 11q22-q23, deletions in 17p13 and deletions in 6q21. The most common gains of chromosomal material are trisomies 12q, 8q and 3q. Translocation breakpoints, in particular involving the immunoglobulin heavy chain locus at 14q32, which are frequently observed in other types of non-Hodgkin's lymphoma, are rare events in CLL. Genes affected by common chromosome aberrations in CLL appear to be p53 in cases with 17p deletion and ataxia telangiectasia mutated (ATM), which is mutated in a subset of cases with 11q22-q23 aberrations. However, for the other frequently affected genomic regions, the search for candidate genes is ongoing. In parallel, the accurate evaluation of the incidence of chromosome aberrations in CLL by FISH allows the correlation of genetic abnormalities with clinical disease manifestations and outcome. In particular, 17p abnormalities and deletions in 11q22-q23 have already been shown to be among the most important independent prognostic factors identifying subgroups of patients with rapid disease progression and short survival. In addition, deletion 17p has been associated with resistance to treatment with purine analogs. Therefore, genetic abnormalities may allow a risk assessment for individual patients at the time of diagnosis, thus giving the opportunity for a risk-adapted management.  相似文献   

12.
We describe eight patients who have alpha thalassemia which cannot be accounted for by the Mendelian inheritance of abnormal alpha globin genes. Apart from the hematologic abnormality, the other universal clinical finding is mild to moderate mental handicap; there is also a broad spectrum of associated dysmorphic features. Initial analysis of the alpha globin gene complex (which maps to chromosome band 16p13.3), demonstrated that the alpha thalassemia results from failure of the patient to inherit an alpha globin allele from one of the parents. Using a combined molecular and cytogenetic approach, we have extended this analysis to show that all of these patients have 16p deletions which are variable in extent but limited to the terminal band 16p13.3; in at least four cases the deletion results from unbalanced chromosome translocation, and hence aneuploidy of a second chromosome is also present. The relatively nonspecific clinical phenotype contrasts with the other currently known microdeletion syndromes; this may reflect ascertainment bias in the recognition of such syndromes. This work represents the first step in the characterization of a new microdeletion syndrome that is probably underdiagnosed at present.  相似文献   

13.
Summary It has been suggested that fragile sites on human chromosomes predispose to specific rearrangements seen in cancer. Renal cell carcinoma is characterised by recurrent aberrations of chromosome 3p and frequent rearrangements of chromosome 5q. To investigate whether there might be an association between fragile sites and recurrent breakpoints in renal cell carcinoma, we have determined the breakpoints observed in 50 tumours and compared them to the known fragile sites on chromosomes 3 and 5. No correlation between fragile sites and cancer-related breakpoints in renal cell carcinomas was found.  相似文献   

14.
The hyper-immunoglobulin E syndrome (HIES) is a rare primary immunodeficiency characterized by recurrent infections, elevated serum IgE-levels, and involvement of the soft- and bony tissues. We speculated that this complex disease may be caused by a microdeletion syndrome. We therefore analyzed 30 sporadic HIES patients for the presence of chromosomal imbalances using Affymetrix 50k XbaI and 23 of the 30 patients with the higher-resolution 250k StyI SNP mapping arrays. We detected only eight different copy number alterations in six patients with the 50k approach, and seven of these presented known polymorphic regions not associated with disease. However, one patient showed a unique gain on chromosome 20p. 250k array analysis identified this gain as a rare polymorphism segregating in the patient’s family, but not associated with the HIES phenotype. In addition, 265 known and novel copy number variants (CNVs) were identified with the 250k arrays, but no recurrent imbalances reminescent of a microdeletion syndrome were found. We aligned the identified CNVs with loci that have been associated with HIES or phenotypically overlapping syndromes. Doing so, a 2-Mb deletion spanning the PEPD gene on 19q13.11 was identified on one allele of one patient. Homozygous mutations in PEPD are responsible for the autosomal-recessive prolidase deficiency which resembles HIES in some aspects. Sequencing of the healthy allele, however, revealed a wild-type sequence. In summary, our results suggest that HIES is not likely to be a microdeletion syndrome. Dietmar Pfeifer and Cristina Woellner contributed equally to the work and are considered aequo loco.  相似文献   

15.
16.
An analysis of structural aberrations in human sperm chromosomes   总被引:10,自引:0,他引:10  
We have analyzed structural aberrations in 5,000 sperm chromosome complements obtained from 20 men over a 5-yr period by fusion of human sperm with hamster eggs. Detailed data are presented on 366 abnormal cells with 379 analyzable breakpoints. The frequency of cells with structural aberrations ranged from 1.9% to 14.5% among donors; this interindividual variability was statistically significant (p less than 0.0001). In contrast, repeat samples from individual men showed no significant variation over time. The number of sperm chromosome sets processed per hamster egg had no effect on the frequency with which structural aberrations occurred, nor were sperm chromosome abnormalities altered by varying capacitation or culture conditions. The spectrum of structural aberrations observed in human sperm chromosomes and a chi-square analysis of breakpoints based on DNA content are presented. Although human sperm chromosome abnormalities were visualized with a cross-species system, we believe that they represent an inherent, biologically significant phenomenon.  相似文献   

17.
The Prader-Willi syndrome and the Angelman syndrome   总被引:1,自引:0,他引:1  
The Prader-Willi syndrome and the Angelman syndrome are characterised by a complex clinical and behavioural phenotype resulting from loss of paternal or maternal expression, respectively, of genes located on the human chromosome 15q11-13. Different molecular mechanisms leading to this imbalance have been identified, including microdeletions, intragenic mutations, uniparental disomy and imprinting centre defects. Low copy repeat gene clusters are known to flank the 15q11-13 microdeletion. They predispose to unequal crossing-over events resulting in the deletion. Involvement of multiple disease genes is strongly suspected and traditional positional cloning techniques as well as animal models are used to identify the involved genes. In this review we include the present state of art and a delineation of future approach to study the candidate genes in these two syndromes.  相似文献   

18.
Genomic structural changes, such as gene Copy Number Variations (CNVs) are extremely abundant in the human genome. An enormous effort is currently ongoing to recognize and catalogue human CNVs and their associations with abnormal phenotypic outcomes. Recently, several reports related neuropsychiatric diseases (i.e. autism spectrum disorders, schizophrenia, mental retardation, behavioral problems, epilepsy) with specific CNV. Moreover, for some conditions, both the deletion and duplication of the same genomic segment are related to the phenotype. Syndromes associated with CNVs (microdeletion and microduplication) have long been known to display specific neurobehavioral traits. It is important to note that not every gene is susceptible to gene dosage changes and there are only a few dosage sensitive genes. Smith-Magenis (SMS) and Potocki-Lupski (PTLS) syndromes are associated with a reciprocal microdeletion and microduplication within chromosome 17p11.2. in humans. The dosage sensitive gene responsible for most phenotypes in SMS has been identified: the Retinoic Acid Induced 1 (RAI1). Studies on mouse models and humans suggest that RAI1 is likely the dosage sensitive gene responsible for clinical features in PTLS. In addition, the human RAI1 gene has been implicated in several neurobehavioral traits as spinocerebellar ataxia (SCA2), schizophrenia and non syndromic autism. In this review we discuss the evidence of RAI1 as a dosage sensitive gene, its relationship with different neurobehavioral traits, gene structure and mutations, and what is known about its molecular and cellular function, as a first step in the elucidation of the mechanisms that relate dosage sensitive genes with abnormal neurobehavioral outcomes.  相似文献   

19.
Chromosome studies in plutonium workers   总被引:2,自引:0,他引:2  
Chromosome analyses have been performed on peripheral blood lymphocytes from 54 men with estimates of plutonium body burdens in excess of 296 Bq. Both stable and unstable aberrations were scored using a banding technique and breakpoints noted. In discussing the significance of aberration frequencies the relative proportions of the different types of aberration and their distribution have been considered and account has been taken of external radiation exposure. It is suggested that significant depositions of plutonium do cause an increase in chromosome aberrations. The distribution of the breakpoints in the controls showed an excess in chromosomes 7 and 14. The formation and survival of radiation-induced breakpoints was randomly distributed amongst the chromosomes according to length. The distribution of the breakpoints within the chromosomes showed an excess in the centromeres and telomeres. Possible hot spots occurred in some of these regions and also in certain bands of the intermediate regions of the chromosomes.  相似文献   

20.
McGill S  Chia W  Karp R  Ashburner M 《Genetics》1988,119(3):647-661
A dominant mutation of Drosophila melanogaster, Scutoid (Sco), acts as an antimorphic allele of the no-ocelli (noc) gene. In Sco the noc region has been transposed from 35B to 35D on chromosome arm 2L and the noc gene is now adjacent to snail (sna). Induced revertants of Sco are frequently mutant for sna or are aberrations broken very close to sna. A molecular analysis of the Sco chromosome has confirmed that noc is transposed and fused to the sna region. However, only part of the noc region is included within the transposition. The breakpoints of 19 chromosomally aberrant Sco revertants have been mapped at the molecular level. Fourteen of these breakpoints map to the noc region, spread over about 80 kb of DNA. The breakpoints of the remaining five are not within the DNA of the noc region and appear to map within sequences from the sna region. This has been shown directly for three of these, those associated with T(2;3)ScoR+13, In(2L)ScoR+24 and In(2L)ScoR+26. Thus mutation of either noc or sna, genes which are apparently unrelated in their wild-type functions, can revert the antimorphic phenotype of Sco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号