首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Keratins, the major structural protein of all epithelia are a diverse group of cytoskeletal scaffolding proteins that form intermediate filament networks, providing structural support to keratinocytes that maintain the integrity of the skin. Expression of keratin genes is usually regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Amongst the 54 known functional keratin genes in humans, about 22 different genes including, the cornea, hair and hair follicle-specific keratins have been implicated in a wide range of hereditary diseases. The exact phenotype of each disease usually reflects the spatial expression level and the types of mutated keratin genes, the location of the mutations and their consequences at sub-cellular levels as well as other epigenetic and/or environmental factors. The identification of specific pathogenic mutations in keratin disorders formed the basis of our understanding that led to re-classification, improved diagnosis with prognostic implications, prenatal testing and genetic counseling in severe keratin genodermatoses. Molecular defects in cutaneous keratin genes encoding for keratin intermediate filaments (KIFs) causes keratinocytes and tissue-specific fragility, accounting for a large number of genetic disorders in human skin and its appendages. These diseases are characterized by keratinocytes fragility (cytolysis), intra-epidermal blistering, hyperkeratosis, and keratin filament aggregation in severely affected tissues. Examples include epidermolysis bullosa simplex (EBS; K5, K14), keratinopathic ichthyosis (KPI; K1, K2, K10) i.e. epidermolytic ichthyosis (EI; K1, K10) and ichthyosis bullosa of Siemens (IBS; K2), pachyonychia congenita (PC; K6a, K6b, K16, K17), epidermolytic palmo-plantar keratoderma (EPPK; K9, (K1)), monilethrix (K81, K83, K86), ectodermal dysplasia (ED; K85) and steatocystoma multiplex. These keratins also have been identified to have roles in apoptosis, cell proliferation, wound healing, tissue polarity and remodeling. This review summarizes and discusses the clinical, ultrastructural, molecular genetics and biochemical characteristics of a broad spectrum of keratin-related genodermatoses, with special clinical emphasis on EBS, EI and PC. We also highlight current and emerging model tools for prognostic future therapies. Hopefully, disease modeling and in-depth understanding of the molecular pathogenesis of the diseases may lead to the development of novel therapies for several hereditary cutaneous diseases.  相似文献   

2.
Ichthyoses belong to the group of genodermatoses, characterized by hyperkeratosis and desquamation of the epidermis. Clinical manifestation is heterogeneous and depends on the type of the disease. Harlequin foetus is the most severe form of congenital ichtyosis, inherited as an autosomal recessive trait. The disfunction of the epidermis begins prenatally. Neonates are often born prematurely, in severe condition. At present better care and treatment prolong the length and quality of children's life. We report a case of harlequin ichthyosis. Parents were healthy and there was no history of ichthyosis or other congenital anomalies in the family. Sonography at the 26th week of gestation revealed anomalies of the fetal face; however, the diagnosis of harlequin ichthyosis was not established prenatally. The male child was born alive at the 37th week of the third pregnancy, with birth weight of 2900 g. Typical features of harlequin ichthyosis were present at birth. Intensive neonatological care was necessary. The child survived and at the time of the report was 6 months old and in good condition.  相似文献   

3.
Mutations in keratin genes cause a diverse spectrum of skin, hair and mucosal disorders. Cutaneous disorders include epidermolysis bullosa simplex, palmoplantar keratoderma, epidermolytic ichthyosis and pachyonychia congenita. Both clinical and laboratory observations confirm a major role for keratins in maintaining epidermal cell–cell adhesion. When normal tissue homeostasis is disturbed, for example, during wound healing and cancer, keratins play an important non-mechanical role. Post-translational modifications including glycosylation and phosphorylation of keratins play an important role in protection of epithelial cells from injury. Keratins also play a role in modulation of the immune response. A current focus in the area of keratins and disease is the development of new treatments including small inhibitory RNA (siRNA) to mutant keratins and small molecules to modulate keratin expression.  相似文献   

4.
Bullous congenital ichthyosiform erythroderma (BCIE) is characterized by blistering and erythroderma in infancy and by erythroderma and ichthyosis thereafter. Epidermolytic hyperkeratosis is a hallmark feature of light and electron microscopy. Here we report on four individuals from two families with a unique clinical disorder with histological findings of epidermolytic hyperkeratosis. Manifesting erythema and superficial erosions at birth, which improved during the first few months of life, affected individuals later developed palmoplantar hyperkeratosis with patchy erythema and scale elsewhere on the body. Three affected individuals exhibit dramatic episodic flares of annular, polycyclic erythematous plaques with scale, which coalesce to involve most of the body surface. The flares last weeks to months. In the interim periods the skin may be normal, except for palmoplantar hyperkeratosis. Abnormal keratin-filament aggregates were observed in suprabasal keratinocytes from both probands, suggesting that the causative mutation might reside in keratin K1 or keratin K10. In one proband, sequencing of K1 revealed a heterozygous mutation, 1436T-->C, predicting a change of isoleucine to threonine in the highly conserved helix-termination motif. In the second family, a heterozygous mutation, 1435A-->T, was found in K1, predicting an isoleucine-to-phenylalanine substitution in the same codon. Both mutations were excluded in both a control population and all unaffected family members tested. These findings reveal that a clinical phenotype distinct from classic BCIE but with similar histology can result from K1 mutations and that mutations at this codon give rise to a clinically unique condition.  相似文献   

5.
Ichthyosis with confetti (IWC) is an autosomal dominant congenital ichthyosis also known as ichthyosis variegata or congenital reticular ichthyosiform erythroderma. It manifests at birth with generalized ichthyosiform erythroderma or with a collodion baby picture. The erythrodermic and ichthyotic phenotype persists during life and its severity may modify. However, the hallmark of the disease is the appearance, in childhood or later in life, of healthy skin confetti-like spots, which increase in number and size with time. IWC is a very rare genodermatosis, with a prevalence <1/1,000,000 and only 40 cases reported worldwide. The most important associated clinical features include ear deformities, mammillae hypoplasia, palmoplantar keratoderma, hypertrichosis and ectropion. IWC is due to dominant negative mutations in the KRT10 and KRT1 genes, encoding for keratins 10 and keratin 1, respectively. In this context, healthy skin confetti-like spots represent “repaired” skin due to independent events of reversion of keratin gene mutations via mitotic recombination. In most cases, IWC clinical suspicion is delayed until the detection of white skin spots. Clinical features, which may represent hint to the diagnosis of IWC even before appearance of confetti-like spots, include ear and mammillae hypoplasia, the progressive development of hypertrichosis and, in some patients, of adherent verrucous plaques of hyperkeratosis. Altogether the histopathological finding of keratinocyte vacuolization and the nuclear staining for keratin 10 and keratin 1 by immunofluorescence are pathognomonic. Nevertheless, mutational analysis of KRT10 or KRT1 genes is at present the gold standard to confirm the diagnosis. IWC has to be differentiated mainly from congenital ichthyosiform erythroderma. Differential diagnosis also includes syndromic ichthyoses, in particular Netherton syndrome, and the keratinopathic ichthyoses. Most of reported IWC cases are sporadic, but familial cases with autosomal dominant mode of inheritance have been also described. Therefore, knowledge of the mutation is the only way to properly counsel the couples. No specific and satisfactory therapy is currently available for IWC. Like for other congenital ichthyoses, topical treatments (mainly emollients and keratolytics) are symptomatic and offer only temporary relief. Among systemic treatments, retinoids, in particular acitretin, improve disease symptoms in most patients. Although at present there is no curative therapy for ichthyoses, treatments have improved considerably over the years and the best therapy for each patient is always the result of both physician and patient efforts.  相似文献   

6.

Background

Inherited ichthyoses represent a group of rare skin disorders characterized by scaling, hyperkeratosis and inconstant erythema, involving most of the tegument. Epidemiology remains poorly described. This study aims to evaluate the prevalence of inherited ichthyosis (excluding very mild forms) and its different clinical forms in France.

Methods

Capture – recapture method was used for this study. According to statistical requirements, 3 different lists (reference/competence centres, French association of patients with ichthyosis and internet network) were used to record such patients. The study was conducted in 5 areas during a closed period.

Results

The prevalence was estimated at 13.3 per million people (/M) (CI95%, [10.9 – 17.6]). With regard to autosomal recessive congenital ichthyosis, the prevalence was estimated at 7/M (CI 95% [5.7 – 9.2]), with a prevalence of lamellar ichthyosis and congenital ichthyosiform erythroderma of 4.5/M (CI 95% [3.7 – 5.9]) and 1.9/M (CI 95% [1.6 – 2.6]), respectively. Prevalence of keratinopathic forms was estimated at 1.1/M (CI 95% [0.9 – 1.5]). Prevalence of syndromic forms (all clinical forms together) was estimated at 1.9/M (CI 95% [1.6 – 2.6]).

Conclusions

Our results constitute a crucial basis to properly size the necessary health measures that are required to improve patient care and design further clinical studies.  相似文献   

7.
Keratins are a family of structurally related proteins that form the intermediate filament cytoskeleton in epithelial cells. Mutations in K1 and K5 result in the autosomal dominant disorders epidermolytic hyperkeratosis/bullous congenital ichthyosiform erythroderma and epidermolysis bullosa simplex, respectively. Most disease-associated mutations are within exons encoding protein domains involved in keratin filament assembly. However, some mutations occur outside the mutation hot-spots and may perturb intermolecular interactions between keratins and other proteins, usually with milder clinical consequences. To screen the entire keratin 1 and keratin 5 genes we have characterized their intron-exon organization. The keratin 1 gene comprises 9 exons spanning approximately 5.6 kb on 12q, and the keratin 5 gene comprises 9 exons spanning approximately 6.1 kb on 12q. We have also developed a comprehensive PCR-based mutation detection strategy using primers placed on flanking introns followed by direct sequencing of the PCR products.  相似文献   

8.
Two clinical forms of ichthyosis in cattle have been reported, ichthyosis fetalis and congenital ichthyosis. Ichthyosis poses animal welfare and economic issues and the more severe form, ichthyosis fetalis, is lethal. A Shorthorn calf with ichthyosis fetalis was investigated and a likely causal missense variant on chromosome 2 in the ABCA12 gene (NM_001191294.2:c.6776T>C) was identified by whole genome sequencing. Mutations in the ABCA12 gene are known to cause ichthyosis fetalis in cattle and Harlequin ichthyosis in humans. Sanger sequencing of the affected calf and the dam confirmed the variant was homozygous in the affected calf and heterozygous in the dam. Further genotyping of 130 Shorthorn animals from the same property revealed an estimated allele frequency of 3.8%. The presented findings enable genetic testing for breeding and diagnostics.  相似文献   

9.
Lessons from disorders of epidermal differentiation-associated keratins   总被引:2,自引:0,他引:2  
A number of diseases have been associated with mutations in genes encoding keratin intermediate filaments. Several of these disorders have skin manifestations, in which histological changes highlight the role of various different keratins in epidermal differentiation. For example, mutations in either K1 or K10 (the major keratin pair expressed in differentiated keratinocytes) usually lead to clumped keratin filaments and cytolysis. Furthermore, the precise nature of the mutation has direct implications for disease phenotype. Specifically, mutations in the H1 and alpha-helical rod domains of K1/K10 result in bullous congenital ichthyosiform erythroderma, underscoring the critical role for this keratin filament domain in maintaining cellular integrity. However, a lysine to isoleucine substitution in the V1 domain of K1 underlies a form of palmoplantar keratoderma, which has different cell biological implications. Keratins are cross-linked into the cornified cell envelopes through this particular lysine residue and the consequences of the mutation lead to changes in keratin-desmosome association and cornified cell morphology, suggesting a role for this keratin subdomain in cornified cell envelope formation. Recently, to extend genotype-phenotype correlation, a frameshift mutation in the V2 region of the K1 tail domain was identified in ichthyosis hystrix (Curth-Macklin type), in which keratin filaments show a characteristic shell-like structure and fail to form proper bundles. In this case, the association of desmosomes with loricrin was also altered, implicating this keratin domain in organizing the intracellular distribution of loricrin during cornification. Collectively, these mutations in K1/K10 provide a fascinating insight into both normal and abnormal processes of epidermal differentiation.  相似文献   

10.
11.
Filaggrin is a histidine-rich, basic protein whose name was first proposed based on its ability to aggregate intermediate filaments in vitro. Based on this in vitro observation, it has generally been assumed that filaggrin functions in vivo as a matrix protein which causes keratin filaments to become densely packed in the terminally differentiated cornified cells. Inconsistent with this view however, is the well-known observation that keratin aggregation appears to proceed normally in the affected epidermis of ichthyosis vulgaris patients despite a greatly reduced quantity of filaggrin. To address this issue, we used immuno-electron microscopy to localize filaggrin and its cross-reactive precursor, profilaggrin, in human and mouse epidermis, as well as in ichthyosis vulgaris epidermis. We found that the localization of filaggrin in lower cornified cells correlates precisely with the formation of aggregated keratin filaments, and the disappearance of filaggrin in upper cornified cells correlates precisely with the loosening of keratin filaments. Furthermore, we showed that, even in ichthyosis vulgaris, small amounts of filaggrin/profilaggrin are present as electron-dense deposits associated with keratin filaments in the granular cells, and that the localization of this small amount of antigen again correlates with the aggregation state of keratin filaments. These data strongly suggest that filaggrin is indeed involved in filament aggregation in vivo.  相似文献   

12.
Summary The late onset of normal keratinization after week 24 menstrual age (MA) of fetal life is the cause of considerable problems with the prenatal diagnosis of congenital ichthyosis. This paper summarizes the experiences with prenatal diagnosis in nine pregnancies at risk of congenital ichthyosis and one at risk of chondrodysplasia punctata, rhizomelic type. An important prerequisite—and the main problem—is the manifestation of the mutant genes early enough in fetal life to allow a safe exclusion. Continuous precocious keratinization of the interfollicular epidermis, hyperkeratosis, and/or specific markers of congenital ichthyosis such as various types of lipid inclusions had been expected. With a normal ultrastructure and development of fetal epidermis no evidence of ichthyosis was present in eight cases; all eight children were born healthy. Regional variations of the onset of keratinization of the interfollicular epidermis, observed in one of these eight fetuses as well as in one fetus at risk (but normal for) recessive dystrophic epidermolysis bullosa, posed considerable problems and might lead to a false-positive diagnosis. Examination after birth allowed one to localize these regions to areas close to the mamillae. Regional variations in addition to the well-known cranio-caudal gradient thus are normal findings: both children have normal skin. One fetus at risk of nonbullous congenital ichthyosiform erythroderma (type II) was involved without prenatal manifestation of interfollicular keratinization, specific markers, or increased numbers of cornified cells in the pilosebaceous follicles at 20 weeks MA. A slightly more irregular pattern of the horn cell contents was not regarded as sufficient evidence alone to indicate congenital ichthyosis. A severely affected boy was born in week 34 MA. Similarly the fetus at risk of chondrodysplasia punctata showed no skin abnormalities, neither at fetoscopy (week 22 MA) nor after abortion (week 24 MA) although based on other clinical features it was clearly affected. Thus, this genodermatosis cannot be diagnosed prenatally by its keratinization disturbances. In future cases, precocious keratinization and hyperkeratosis cannot be expected to be expressed before week 24 MA, and minor signs, such as irregularities of horn cell contents, have to be taken as an indication of involvement. Multiple biopsies are required, and a safe exclusion may be impossible before week 22 MA.  相似文献   

13.
The polypeptide composition of epidermal keratin varies in disease. To better understand the biological meaning of these variations, we have analyzed keratins from a number of human epidermal diseases by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The results reveal a continuous spectrum of keratin expression ranging from one closely resembling the normal in vivo pattern to one almost identical to cultured epidermal keratinocytes. Specifically, a 50-kilodalton (kd) (AE1-positive) and a 58-kd (AE3-positive) keratin are present in all diseases, supporting the concept that they represent "permanent" markers for keratinocytes. A 56.5-kd (AE1) and a 65-67-kd (AE3) keratin, previously shown to be markers for keratinization, are expressed only by lesions retaining a keratinized morphology. A 48-kd (AE1) and a 56-kd (AE3) keratin are present in all hyperproliferative (para- or nonkeratinized) disorders, but not in normal abdominal epidermis or in ichthyosis vulgaris which is a nonhyperproliferative disease. These two keratins have previously been found in various nonepidermal keratinocytes undergoing hyperproliferation, suggesting that these keratins are not epidermis-specific and may represent markers for hyperproliferative keratinocytes in general. In various epidermal diseases, there is a reciprocal expression of the (keratin) markers for hyperproliferation and keratinization, supporting the mutual exclusiveness of the two cellular events. Moreover, our results indicate that, as far as keratin expression is concerned, cultured human epidermal cells resemble and thus may be regarded as a model for epidermal hyperplasia. Finally, the apparent lack of any major, disease-specific keratin changes in the epidermal disorders studied so far implies that keratin abnormalities probably represent the consequence, rather than the cause, of these diseases.  相似文献   

14.
Keratin 8 (K8) serine 73 occurs within a relatively conserved type II keratin motif ((68)NQSLLSPL) and becomes phosphorylated in cultured cells and organs during mitosis, cell stress, and apoptosis. Here we show that Ser-73 is exclusively phosphorylated in vitro by p38 mitogen-activated protein kinase. In cells, Ser-73 phosphorylation occurs in association with p38 kinase activation and is inhibited by SB203580 but not by PD98059. Transfection of K8 Ser-73 --> Ala or K8 Ser-73 --> Asp with K18 generates normal-appearing filaments. In contrast, exposure to okadaic acid results in keratin filament destabilization in cells expressing wild-type or Ser-73 --> Asp K8, whereas Ser-73 --> Ala K8-expressing cells maintain relatively stable filaments. p38 kinase associates with K8/18 immunoprecipitates and binds selectively with K8 using an in vitro overlay assay. Given that K1 Leu-160 --> Pro ((157)NQSLLQPL --> (157)NQSPLQPL) leads to epidermolytic hyperkeratosis, we tested and showed that the analogous K8 Leu-71 --> Pro leads to K8 hyperphosphorylation by p38 kinase in vitro and in transfected cells, likely due to Ser-70 neo-phosphorylation, in association with significant keratin filament collapse upon cell exposure to okadaic acid. Hence, K8 Ser-73 is a physiologic phosphorylation site for p38 kinase, and its phosphorylation plays an important role in keratin filament reorganization. The Ser-73 --> Ala-associated filament reorganization defect is rescued by a Ser-73 --> Asp mutation. Also, disease-causing keratin mutations can modulate keratin phosphorylation and organization, which may affect disease pathogenesis.  相似文献   

15.
During the 2011 International Pigment Cell Conference (IPCC), the Vitiligo European Taskforce (VETF) convened a consensus conference on issues of global importance for vitiligo clinical research. As suggested by an international panel of experts, the conference focused on four topics: classification and nomenclature; definition of stable disease; definition of Koebner's phenomenon (KP); and 'autoimmune vitiligo'. These topics were discussed in seven working groups representing different geographical regions. A consensus emerged that segmental vitiligo be classified separately from all other forms of vitiligo and that the term 'vitiligo' be used as an umbrella term for all non-segmental forms of vitiligo, including 'mixed vitiligo' in which segmental and non-segmental vitiligo are combined and which is considered a subgroup of vitiligo. Further, the conference recommends that disease stability be best assessed based on the stability of individual lesions rather than the overall stability of the disease as the latter is difficult to define precisely and reliably. The conference also endorsed the classification of KP for vitiligo as proposed by the VETF (history based, clinical observation based, or experimentally induced). Lastly, the conference agreed that 'autoimmune vitiligo' should not be used as a separate classification as published evidence indicates that the pathophysiology of all forms of vitiligo likely involves autoimmune or inflammatory mechanisms.  相似文献   

16.
Non-bullous congenital ichthyosis erythroderma (NCIE) and lamellar ichthyosis (LI) are characterized by mutations in 12R-lipoxygenase (12R-LOX) and/or epidermal lipoxygenase 3 (eLOX3) enzymes. The eLOX3 lacks oxygenase activity, but is capable of forming hepoxilin-type products from arachidonic acid-derived hydroperoxide from 12R-LOX, termed 12R-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12R-HpETE). Mutations in either of two enzymes lead to NCIE or LI. Moreover, 12R-LOX-deficient mice exhibit severe phenotypic water barrier dysfunctions. Here, we demonstrate that 12R-HpETE can also be transformed to 8R-HXA(3) by hepoxilin A(3) (HXA(3)) synthase (12-lipoxygenase), which exhibits oxygenase activity. We also presented a novel form of ichthyosis in a patient, termed hepoxilin A(3) synthase-linked ichthyosis (HXALI), whose scales expressed high levels of 12R-LOX, but were deficient of HXA(3) synthase.  相似文献   

17.
Fatty acids in the epidermis can be incorporated into complex lipids or exist in a free form, and they are crucial to proper functions of the epidermis and its appendages, such as sebaceous glands. Epidermal fatty acids can be synthesized de novo by keratinocytes or taken up from extracutaneous sources in a process that likely involves protein transporters. Several proteins that are expressed in the epidermis have been proposed to facilitate the uptake of long-chain fatty acids (LCFA) in mammalian cells, including fatty acid translocase/CD36, fatty acid binding protein, and fatty acid transport protein (FATP)/very long-chain acyl-CoA synthetase. In this review, we will discuss the mechanisms by which these candidate transporters facilitate the uptake of fatty acids. We will then discuss the clinical implications of defects in these transporters and relevant animal models, including the FATP4 animal models and ichthyosis prematurity syndrome, a congenital ichthyosis caused by FATP4 deficiency. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

18.
Autosomal recessive ichthyosis (ARI) includes a heterogeneous group of disorders of keratinization characterized by desquamation over the whole body. Two forms largely limited to the skin have been defined: lamellar ichthyosis (LI) and nonbullous congenital ichthyosiform erythroderma (NCIE). A first gene for LI, transglutaminase TGM1, has been identified on chromosome 14, and a second one has been localized on chromosome 2. In a genomewide scan of nine large consanguineous families, using homozygosity mapping, two new loci for ARI were found, one for a lamellar form in a 6-cM interval on chromosome 19 and a second for an erythrodermic form in a 7.7-cM interval on chromosome 3. Linkage to one of the four loci could be demonstrated in more than half of 51 consanguineous families, most of them from the Mediterranean basin. All four loci could be excluded in the others, implying further genetic heterogeneity in this disorder. Multipoint linkage analysis gave maximal LOD scores of 11.25 at locus D19S566 and 8.53 at locus D3S3564.  相似文献   

19.
Harlequin ichthyosis (HI) is a severe autosomal recessive developmental disorder of the skin that is frequently but not always fatal in the first few days of life. In HI, mutations in both ABCA12 gene alleles must have a severe impact on protein function and most mutations are truncating. The presence of at least one nontruncating mutation (predicting a residual protein function) usually causes a less severe congenital ichthyosis (lamellar ichthyosis or congenital ichthyosiform erythroderma). Here we report on a girl with severe HI diagnosed by prenatal ultrasound at 33 5/7 week gestation. Ultrasound findings included ectropion, eclabium, deformed nose, hands and feet, joint contractures, hyperechogenic amniotic fluid and polyhydramnion. After birth, palliative treatment was provided and she died on her first day of life. Sequence analysis of the ABCA12 gene identified two novel mutations, c.1857delA (predicting p.Lys619*) in exon 15 and c.5653–5655delTAT (predicting p.1885delTyr) in exon 37, each in heterozygous state. The c.5653–5655delTAT mutation is not truncating, but the deleted tyrosine at position 1885 is perfectly conserved among vertebrates and molecular studies evaluated the mutation as probably disease causing and damaging.  相似文献   

20.
Autosomal recessive lamellar ichthyosis is a severe congenital disorder of keratinization, characterized by variable erythema of the whole body surface and by different scaling patterns. Recently, mutations have been identified in patients with lamellar ichthyosis in the TGM1 gene coding for keratinocyte transglutaminase, and a second locus has been mapped to chromosome 2. We have now analyzed the genotype/phenotype correlation in a total of 14 families with lamellar ichthyosis. Linkage analyses using microsatellites in the region of the TGM1 gene confirmed genetic heterogeneity. In patients not linked to the TGM1 gene, the second region identified on chromosome 2 and a further candidate region on chromosome 20 were excluded, confirming as well the existence of at least three loci for lamellar ichthyosis. Sequence analyses of the TGM1 gene in families compatible with linkage to this locus revealed seven different missense mutations, five of these unpublished so far, and one splice mutation. No genotype/phenotype correlation for mutations in the TGM1 gene was found in this group of patients, which included two unrelated patients homozygous for the same mutation. Similarly, no clear difference in the clinical picture was seen between patients with TGM1 mutations and those unlinked to the TGM1 locus. Comparison of genetic and clinical classifications for patients with lamellar ichthyosis shows no consistency and thus indicates that clinical criteria currently in use cannot discriminate between the molecularly different forms of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号