首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Recent developments in bacterial cold-shock response   总被引:9,自引:0,他引:9  
  相似文献   

4.
The molecular mechanisms of cold acclimation are still largely unknown; however, it has been established that overwintering plants such as winter wheat increases freeze tolerance during cold treatments. In prokaryotes, cold shock proteins are induced by temperature downshifts and have been proposed to function as RNA chaperones. A wheat cDNA encoding a putative nucleic acid-binding protein, WCSP1, was isolated and found to be homologous to the predominant CspA of Escherichia coli. The putative WCSP1 protein contains a three-domain structure consisting of an N-terminal cold shock domain with two internal conserved consensus RNA binding domains and an internal glycine-rich region, which is interspersed with three C-terminal CX(2)CX(4)HX(4)C (CCHC) zinc fingers. Each domain has been described independently within several nucleotide-binding proteins. Northern and Western blot analyses showed that WCSP1 mRNA and protein levels steadily increased during cold acclimation, respectively. WCSP1 induction was cold-specific because neither abscisic acid treatment, drought, salinity, nor heat stress induced WCSP1 expression. Nucleotide binding assays determined that WCSP1 binds ssDNA, dsDNA, and RNA homopolymers. The capacity to bind dsDNA was nearly eliminated in a mutant protein lacking C-terminal zinc fingers. Structural and expression similarities to E. coli CspA suggest that WCSP1 may be involved in gene regulation during cold acclimation.  相似文献   

5.
The psychrotrophic bacterium Pseudomonas fragi was subjected to cold shocks from 30 or 20 to 5 degrees C. The downshifts were followed by a lag phase before growth resumed at a characteristic 5 degrees C growth rate. The analysis of protein patterns by two-dimentional gel electrophoresis revealed overexpression of 25 or 17 proteins and underexpression of 12 proteins following the 30- or 20-to-5 degrees C shift, respectively. The two downshifts shared similar variations of synthesis of 20 proteins. The kinetic analysis distinguished the induced proteins into cold shock proteins (Csps), which were rapidly but transiently overexpressed, and cold acclimation proteins (Caps), which were more or less rapidly induced but still overexpressed several hours after the downshifts. Among the cold-induced proteins, four low-molecular-mass proteins, two of them previously characterized as Caps (CapA and CapB), and heat acclimation proteins (Haps) as well as heat shock proteins (Hsps) for the two others (TapA and TapB) displayed higher levels of induction. Partial amino acid sequences, obtained by microsequencing, were used to design primers to amplify by PCR the four genes and then determine their nucleotide sequences. A BamHI-EcoRI restriction fragment of 1.9 kb, containing the complete coding sequence for capB, was cloned and sequenced. The four peptides belong to the family of small nucleic acid-binding proteins as CspA, the major Escherichia coli Csp. They are likely to play a major role in the adaptative response of P. fragi to environmental temperature changes.  相似文献   

6.
7.
8.
The cold shock response of Escherichia coli is elicited by downshift of temperature from 37 degrees C to 15 degrees C and is characterized by induction of several cold shock proteins, including CsdA, during the acclimation phase. CsdA, a DEAD-box protein, has been proposed to participate in a variety of processes, such as ribosome biogenesis, mRNA decay, translation initiation, and gene regulation. It is not clear which of the functions of CsdA play a role in its essential cold shock function or whether all do, and so far no protein has been shown to complement its function in vivo. Our screening of an E. coli genomic library for an in vivo counterpart of CsdA that can compensate for its absence at low temperature revealed only one protein, RhlE, another DEAD-box RNA helicase. We also observed that although not detected in our genetic screening, two cold shock-inducible proteins, namely, CspA, an RNA chaperone, and RNase R, an exonuclease, can also complement the cold shock function of CsdA. Interestingly, the absence of CsdA and RNase R leads to increased sensitivity of the cells to even moderate temperature downshifts. The correlation between the helicase activity of CsdA and the stability of mRNAs of cold-inducible genes was shown using cspA mRNA, which was significantly stabilized in the DeltacsdA cells, an effect counteracted by overexpression of wild-type CsdA or RNase R but not by that of the helicase-deficient mutant of CsdA. These results suggest that the primary role of CsdA in cold acclimation of cells is in mRNA decay and that its helicase activity is pivotal for promoting degradation of mRNAs stabilized at low temperature.  相似文献   

9.
B Mayr  T Kaplan  S Lechner    S Scherer 《Journal of bacteriology》1996,178(10):2916-2925
Whole-cell protein patterns of a psychrotrophic Bacillus cereus strain from cultures grown at 7 and 30 degrees C were compared. This analysis revealed that at least three major proteins are expressed at a significantly higher rate at 7 degrees C than at 30 degrees C. The most abundant of these cold-induced proteins was a small polypeptide of 7.5 kDa, designated CspA, of B. cereus. In addition, four small proteins very similar in size to CspA were seen on both 7 degrees C and 30 degrees C two-dimensional protein gels. Immunoblot analysis using B. cereus anti-CspA antibodies indicated that the five proteins described above plus an additional sixth protein not visible on silver-stained two-dimensional gels are members of a B. cereus cold shock protein family. This hypothesis was corroborated by cloning and sequencing of the genes encoding five proteins of this family. The protein sequences deduced are highly similar and show homology to small procaryotic cold shock proteins and to the cold shock domain of eucaryotic Y-box proteins. Besides CspA, only one of the additional five CspA homologs was slightly cold inducible. In the presence of 100 mM NaCl, the two purified members of the protein family (CspA and CspE) elute as dimers at an apparent molecular mass of 15 kDa from a gel filtration column. At higher salt concentrations, they dissociate into their monomers. Their ability to bind to the ATTGG motif of single-stranded oligonucleotides was demonstrated by band shift analysis.  相似文献   

10.
11.
Escherichia coli contains the CspA family, consisting of nine proteins (CspA to CspI), in which CspA, CspB, and CspG have been shown to be cold shock inducible and CspD has been shown to be stationary-phase inducible. The cspI gene is located at 35.2 min on the E. coli chromosome map, and CspI shows 70, 70, and 79% identity to CspA, CspB, and CspG, respectively. Analyses of cspI-lacZ fusion constructs and the cspI mRNA revealed that cspI is cold shock inducible. The 5'-untranslated region of the cspI mRNA consists of 145 bases and causes a negative effect on cspI expression at 37 degrees C. The cspI mRNA was very unstable at 37 degrees C but was stabilized upon cold shock. Analyses of the CspI protein on two-dimensional gel electrophoresis revealed that CspI production is maximal at or below 15 degrees C. Taking these results together, E. coli possesses a total of four cold shock-inducible proteins in the CspA family. Interestingly, the optimal temperature ranges for their induction are different: CspA induction occurs over the broadest temperature range (30 to 10 degrees C), CspI induction occurs over the narrowest and lowest temperature range (15 to 10 degrees C), and CspB and CspG occurs at temperatures between the above extremes (20 to 10 degrees C).  相似文献   

12.
13.
14.
Cold-shock response and cold-shock proteins.   总被引:13,自引:0,他引:13  
  相似文献   

15.
16.
Escherichia coli contains a large CspA family consisting of nine homologues, in which four are cold-shock inducible and one is stationary-phase inducible. Here, we demonstrate that Myxococcus xanthus possesses at least five CspA homologues, CspA to CspE. Hydrophobic residues forming a hydrophobic core, and aromatic residues, which are included in functional motifs RNP-1 and RNP-2 involved in binding to RNA and ssDNA, are well conserved. These facts suggest that M. xanthus CspA homologues have a similar structure and function as E. coli CspA. However, in contrast to the E. coli CspA family, the expression of M. xanthus csp genes as judged by primer extension analysis is not significantly regulated by temperature changes, except for cspB of which expression was reduced to less than 10% upon heat shock at 42 degrees C. Such constitutive expression of the csp genes may be important for M. xanthus, a soil-dwelling bacterium, to survive under conditions of exposure to various environmental changes in nature.  相似文献   

17.
18.
Upon cold shock, Escherichia coli cell growth transiently stops. During this acclimation phase, specific cold shock proteins (CSPs) are highly induced. At the end of the acclimation phase, their synthesis is reduced to new basal levels, while the non-cold shock protein synthesis is resumed, resulting in cell growth reinitiation. Here, we report that polynucleotide phosphorylase (PNPase) is required to repress CSP production at the end of the acclimation phase. A pnp mutant, upon cold shock, maintained a high level of CSPs even after 24 h. PNPase was found to be essential for selective degradation of CSP mRNAs at 15 degrees C. In a poly(A) polymerase mutant and a CsdA RNA helicase mutant, CSP expression upon cold shock was significantly prolonged, indicating that PNPase in concert with poly(A) polymerase and CsdA RNA helicase plays a critical role in cold shock adaptation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号