首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The utility of a newly synthesized chemical variation of DAPI (4-6-diamidino-2-phenyl-indole), D 287/170, for differential staining of constitutive heterochromatin in man is demonstrated. Direct staining of human chromosomes with D 287/170 results in brilliant fluorescence of the paracentromeric C-band of chromosome 9, of a proximal short-arm segment of chromosome 15 and of certain heterochromatic regions in the Y. Bright, but less conspicuous fluorescence is occassionally seen at the centromeres of other chromosomes. The staining differentiation obtained by D 287/170 is very distinct, and the intensity of the fluorescent light is unusually high. The new fluorochrome should prove particularly useful for detecting and analyzing human chromosome 9 heterochromatin at various stages of the cell cycle in normal and structurally altered chromosomes.  相似文献   

2.
The fluorochrome pattern produced by DA/DAPI double staining in Pan paniscus chromosomes is reported. The location of DA/DAPI prominent bands differs from that reported for all other hominoid species. However, the pattern in the pygmy chimpanzee is most similar to that seen in Pan troglodytes. Comparison of the DA/DAPI pattern of the other hominoid species allows the construction of a proposed hominoid ancestral karyotype and a preliminary phylogenetic reconstruction of DA/DAPI bands for the great apes and man.  相似文献   

3.
Characterization of human chromosomal constitutive heterochromatin   总被引:2,自引:0,他引:2  
The constitutive heterochromatin of human chromosomes is evaluated by various selective staining techniques, i.e., CBG, G-11, distamycin A plus 4,6-diamidino-2-phenylindole-2-HCl (DA/DAPI), the fluorochrome D287/170, and Giemsa staining following the treatments with restriction endonucleases AluI and HaeIII. It is suggested that the constitutive heterochromatin could be arbitrarily divided into at least seven types depending on the staining profiles expressed by different regions of C-bands. The pericentromeric C-bands of chromosomes 1, 5, 7, 9, 13-18, and 20-22 consist of more than one type of chromatin, of which chromosome 1 presents the highest degree of heterogeneity. Chromosomes 3 and 4 show relatively less consistent heterogeneous fractions in their C-bands. The C-bands of chromosomes 10, 19, and the Y do not have much heterogeneity but have characteristic patterns with other methods using restriction endonucleases. Chromosomes 2, 6, 8, 11, 12, and X have homogeneous bands stained by the CBG technique only. Among the chromosomes with smaller pericentric C-bands, chromosome 18 shows frequent heteromorphic variants for the size and position (inversions) of the AluI resistant fraction of C-band. The analysis of various types of heterochromatin with respect to specific satellite and nonsatellite DNA sequences suggest that the staining profiles are probably related to sequence diversity.  相似文献   

4.
鱼类染色体的荧光显带研究   总被引:10,自引:1,他引:9  
应用GC碱基特异性荧光染料色霉素A,辅以AT减基特异性荧光染料Hoechst33258,DAPI或喹吖因对鲤鱼,鲫鱼,大鳞副泥鳅和的有丝分裂染色体及黄鳝的有丝分裂和减数分裂染色体进行了荧光显带研究,结果发现,色霉素A3可以特异性地显示鱼类有丝分裂及减数分裂各个时期核仁组织区NORS的存在,Hoechst33258,DAPI或喹吖因则使这些区域(NORs)淡染,大鳞副泥鳞的染色体NORs 分布位置具有性别,根据实验结果,对有关鱼类染色体的荧光染色研究及其应用进行了讨论。  相似文献   

5.
Numerous selective and differential staining techniques have been used to investigate the hierarchical organisation of the human genome. This investigation demonstrates the unique characteristics that are produced on fixed human chromosomes when sequential procedures involving restriction endonuclease TaqI, distamycin A (DA) and 4,6-diamidino-2-phenylindole (DAPI) are employed. TaqI produces extensive gaps in the heterochromatic regions associated with satellite II and III DNAs of human chromosomes 1, 9, 15, 16 and Y. DA/DAPI selectively highlights, as brightly fluorescent C-bands, the heterochromatin associated with the alpha, beta, satellite II and III DNAs of these chromosomes. When DA and DAPI are used on chromosomes before TaqI digestion, and then stained with Giemsa, the centromeric regions appear to be more resistant, producing a distinct C-banding pattern and gaps in the heterochromatin regions. Sequential use of the DA/DAPI technique after TaqI treatment produces a bright fluorescence on the remaining pericentromeric regions of chromosomes 1, 9, 16 and Y, which also displayed a cytochemically unique banding pattern. This approach has produced specific enhanced chromosomal bands, which may serve as tools to characterize genomic heterochromatin at a fundamental level.  相似文献   

6.
Characterization of Drosophila heterochromatin   总被引:11,自引:0,他引:11  
A number of preliminary experiments have shown that the fluorescence pattern of Hoechst 33258, as opposed to that of quinacrine, varies with the concentration of dye. The metaphase chromosomes of D. melanogaster, D. simulans, D. virilis, D. texana, D. hydei and D. ezoana have therefore been stained with two concentrations of H 33258 (0.05 and 0.5 mug/ml in phosphate buffer at pH 7) and with a single concentration of quinacrine (0.5% in absolute alcohol). The three fluorescence patterns so obtained were shown to be somewhat different in some of the species and the coincide in others. All three stainings gave an excellent longitudinal differentiation of heterochromatin while euchromatin fluoresced homogeneously. Living ganglion cells of the six species mentioned above were treated with quinacrine and H 33258. Quinacrine induced a generalized lengthening and swelling of the chromosomes and H 33258 the decondensation of specific heterochromatic regions. A correlation of the base composition of the satellite DNAs contained in the heterochromatin of the species studied with the relative fluorescence and decondensation patterns showed that: 1) the extremely fluorochrome bright areas and those decondensed are present only in species containing AT rich satellite DNA; 2) the opposite is not true since some AT-rich satellite DNAs are neither fluorochrome bright nor decondensed; 3) there is no good correspondence between Hoechst bright areas and the decondensed ones. AT richness therefore appears to be a necessary but not sufficient condition both for bright fluorescence and decondensation. Some cytological evidence suggests that similarly AT rich satellite DNAs respond differently in fluorescence and decondensation because they are bound to different chromosomal proteins. A combination of the results of fluorescence and decondensation revealed at least 14 types of heterochromatin; 4-7 of which are simultaneously present in the same species. Since closely related species (i.e. D. melanogaster and D. simulans; D. virilis and D. texana) show marked differences in the heterochromatic types they contain, it can be suggested that within the genus Drosophila qualitative variations of heterochromatin have played an important role in speciation.  相似文献   

7.
采用限制酶AluI显带、CA_(?)/DA/DAPI荧光染色和常规C带技术研究了家猪染色体着丝粒结构异染色质,结果表明:着丝粒结构异染色质至少可被区分为3类,并且在染色体组内各有其特异的染色体分布。将家猪染色体DA/DAPI荧光带和限制酶AluI显带与人类染色体比较,发现家猪13—18号端着丝粒染色体显带特征与人染色体1,9、16、Y一致。提示家猪13—18号端着丝粒区结构异染色质存在与人类随体DNA相似的DNA组成。  相似文献   

8.
C-banding, base-specific fluorochrome staining (CMA3/DA/DAPI), and comparative genomic hybridization (CGH) were used to analyze the constitutive heterochromatin in two Israeli Spalax species, S. galili (2n = 52) and S. judai (2n = 60). It was shown that C-positive centromeric heterochromatin and some telomeric sites comprise GC-rich DNA sequences in both species. Comparative genomic in situ hybridization revealed slight qualitative differences in highly repetitive sequences in the two Spalax species. Eight acrocentric pairs in S. judai that are involved in Robertsonian rearrangements, possessed composite heterochromatin with a preference of S. judai highly repetitive sequences in the proximal region. Heterochromatin of the sex chromosomes, two biarmed homologous pairs (4 and 5) in both species, and acrocentric chromosomes from the group with a variable centromere position in S. judai was entirely species-specific. The high level of homology in the composition of heterochromatin may relate to the recent divergence of Israeli Spalax. Interspecies heterochromatin differences are discussed in the context of possible mechanisms in the Spalax chromosome evolution.  相似文献   

9.
The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. © 1995 Wiley-Liss, Inc.  相似文献   

10.
This paper provides new data on chromosomes of Brazilian vampire bats Desmodus rotundus and Diphylla ecaudata. These species were analyzed by GTG, CBG- and CB-DAPI banding, AgNO3/CMA3 sequential staining, base-specific fluorochrome dyes and in situ hybridization with 18S rDNA probe. C-banding (CBG) revealed constitutive heterochromatin in the pericentromeric regions in all autosomes and the X and Y chromosomes appeared entirely heterochromatic in both species. CB-DAPI revealed a coincident banding pattern to that obtained by CBG. Triple staining CMA3/DA/DAPI revealed an R-banding and a weak G-banding pattern in the karyotypes. Sequential AgNO3/CMA3 staining showed a NOR located interstitially on the long arm of pair 8 in D. rotundus and on the short arm of pair 13 in D. ecaudata. FISH with a rDNA probe confirmed the location and number of NORs; a difference neither in intensity nor in size of hybridization signal was detected between homologues for both species.  相似文献   

11.
Summary Variation of DA/DAPI intensity in the Yq12 band was observed in five amniotic cell specimens and one blood specimen from the father of one fetus. Three distinct classes of Yq heterochromatin were identified by distamycin A (DA) treatment of the cell cultures and various staining techniques. The heterochromatin in the Yq11.23 sub-band does not under-condense when exposed to DA, and shows pale fluorescence with quinacrine staining, positive C-banding, and bright fluorescence with DA/DAPI technique. This class of heterochromatin was consistently observed in all specimens studied. The other two classes of heterochromatin are in the Yq12 band. Both show undercondensation when exposed to DA, quinacrine-bright fluorescence, and positive C-banding; howover, one class of heterochromatin shows DA/DAPI-bright fluorescence and the other shows pale fluorescence. The size and banding intensity of the two classes of heterochromatin in Yq12 are variable. These results provide cytological evidence of heterogeneity within the Y heterochromatin region containing AT-rich DNA.  相似文献   

12.
Hoechst 33258 fluorescent staining of Drosophila chromosomes   总被引:8,自引:2,他引:6  
Metaphase chromosomes of D. melanogaster, D. virilis and D. eopydei were sequentilly stained with quinacrine, 33258 Hoechst and Giemsa and photographed after each step. Hoechst stained chromosomes fluoresced much brighter and with different banding patterns than quinacrine stained ones. In contrast to mammalian chromosomes, Drosophia's quinacrine and Hoechst bright bands are all in centric heterochromatin and the banding patterns seem more taxonomically divergent than external morphological characteristics. Hoechst stained D. melanogaster chromosomes show unprecedented longitudinal differentiation by the heterochromatic regions; each arm of each autosome can be unambiguously identified and the Y shows eleven bright bands. The Hoechst stained Y can also be identified in polytene chromocenters. Centric alpha heterochromatin of each D. virilis autosome is composed of two blocks which can be differtiated by a combination of quinacrine and Hoechst staining. The distal block is always Q-H- while the proximal block is, for the various autosomes, either Q-H-, Q+H- or Q+H+. With these permutations of Hoechst and quinacrine staining, D. virilis autosomes can be unambiguously distinguished. The X and two autosomes have H+ heterochromatin which can easily be seen in polytene and interphase nuclei where it seems to aggregate and exclude H- heterochromatin. This affinity of fluorochrome similar heterochromatin was been seen in colcemide induced multiple somatic non-disjunctions where H+ chromosomes were distributed to one rosette and H- chromosomes were distributed to another. Knowing the base composition and base sequences of Drosophila satellites, we conclude that AT richness may be necessary but is certainly an insufficient requirement for quinacrine bright chromatin while GC richness may be a sufficient requirement for the absence of quinacrine or Hoechst brightness. Condensed euchromatin is almost as bright as Q+ heterochromatin. While chromatin condensation has little effect on Hoechst staining, it appears to be "the most important factor responsible for quinacrine brightness.' All existing data from D. virilis indicate that each fluorochrome distinct block of alpha heterochromatin may contain a single a single DNA molecule which is one heptanucleotide repeated two million times.  相似文献   

13.
Satellite DNAs have been isolated from the monocotyledonous plants Scilla siberica, S. amoena, S. ingridae (all are highly GC-rich), and S. mischtschenkoana by using the Ag+ –Cs2SO4 density centrifugation technique. Hybridization in situ has been performed with 3H-cRNA to these satellite DNAs in all four species. In each species, the endogenous satellite DNA is located mainly in intercalary and major heterochromatin bands associated with terminal regions and nucleolar organizer regions (NORs) but not in centromeric regions. Patterns observed after cross-species hybridization show a high degree of satellite DNA homology between S. siberica, S. amoena, and S. ingridae. By contrast, satellite DNA of S. mischtschenkoana consists largely of different, non homologous DNA sequences, with two exceptions: (i) the NORs of all four species contain similar satellite sequences, and (ii) a strong homology exists between the satellite DNA of S. mischtschenkoana and centromeric DNA of S. siberica but not with those of S. amoena and S. ingridae. — Heterochromatin has also been characterized by the AT-specific fluorochromes quinacrine (Q) and DAPI and the GC-specific agent chromomycin A3 (CMA3), in combination with two counterstaining techniques. While CMA3-fluorescence is largely in agreement with data on base composition and location of the specific satellite DNAs, the results with Q and DAPI are conflicting. Prolonged fixation has been found to change the fluorescence character in certain instances, indicating that other factors than the base sequence of the DNA also play a role in fluorochrome staining of chromosomes. The results are discussed in relation to the taxonomy and phylogeny of the four species.  相似文献   

14.
The chromosomes of the gorilla were extensively studied with various staining techniques labeling the different classes of heterochromatin. The chromosomal distribution of distamycin A/DAPI-, D287/170-, quinacrine-, and chromomycin A3-positive heterochromatic regions, as well as the nucleolus organizer regions, is described and compared with the karyotypes of other hominoid species. Lymphocyte cultures were treated with low doses of 5-azacytidine during the last hours of culture. This cytidine analog induces distinct undercondensation in 37 heterochromatic regions in the 24 gorilla chromosomes. The 5-azacytidine-induced undercondensations are localized not only in most of the distamycin A/DAPI-bright heterochromatic regions but also in many telomeric C-bands of the chromosomes. Furthermore, 5-azacytidine preserves the somatic pairing between heterochromatic regions from the interphase nuclei into the metaphase stage. The homeologies and differences in the chromosomal localization of the various classes of heterochromatin, 5-azacytidine-sensitive regions, 5-methylcytosine-rich DNA sequences, and satellite DNAs in the gorilla, chimpanzee, orangutan, and man are discussed.  相似文献   

15.
This study presents a cytogenetic analysis of the genus Dicentrarchus , represented by two species, D. labrax and D. punctatus . The karyotypes are very similar, even after staining with different techniques. Both species show 48 subtelocentric and acrocentric chromosomes, gradually decreasing in size. One pair of small size chromosomes has heteropycnotic and heteromorphtc short arms of longer size. These short arms are C- and Ag-positive, i.e. nucleolar organizer regions, NORs, are located there. Constitutive heterochromatin is also evident as a subcentromeric band on the long arms of a large chromosome pair. CMA3-staining confirms the location and the heteromorphism of NORs. DAPI and quinacrine produce homogeneous staining of chromosomes. A review of cytogenetic studies on 'serranid' species is also presented.  相似文献   

16.
The chromosomes of one male and three female gorillas were extensively studied with various regional banding methods. The chromosomes were stained with the fluorescent dyes quinacrine mustard and distamycin A/DAPI (DA/DAPI), which label different subsets of heterochromatin in the chromosome complement. Furthermore, lymphocyte cultures were treated with the cytidine analog 5-azacytidine (5-azaC). The 5-azaC-induced undercondensations were found in most of the DA/DAPI-bands as well as in many telomeric C-bands. The karyotype of the gorilla exhibits a considerable number of heterochromatin variants. Of the different types of heteromorphisms noted, the most striking is that involving the short arm regions of chromosomes 12 to 16 and 23 (satellite stalk regions) and the paracentromeric heterochromatin of chromosomes 17 and 18. There also are numerous heteromorphic C-bands localized in the telomeric regions of homologous chromosome arms. In comparison, only few heteromorphisms occur between C-bands in the centromeric and pericentromeric regions of homologs. Finally, a variability in the fluorescence intensity of quinacrine-bright satellites in the short arms of chromosomes 12 to 16, 22, and 23 is observed.  相似文献   

17.
Pereira LG  de Souza MJ 《Cytobios》2000,103(403):111-119
The constitutive heterochromatin (CH) of Phaeoparia megacephala was studied using C-banding and fluorochrome staining (CMA3, DAPI and acridine orange). The nucleolar organizer regions (NOR) were identified with silver staining. The chromosome complement of this species was 2n = 23, XO in males, and 2n = 24, XX in females. The CH was pericentromeric in all chromosomes. L1, L2, L3 and X chromosomes showed large blocks of CH, while the medium and small chromosomes had small blocks. The staining procedure with acridine orange revealed the same pattern. All the pericentromeric regions showed small blocks of CMA3-positive constitutive heterochromatin (GC-rich regions), while only part of the large C-band positive chromosome segments (L1, L2, L3 and X) were CMA3 positive. This character demonstrates an uncommon heterogeneity of constitutive heterochromatin in P. megacephala. The fluorochrome DAPI did not reveal DAPI-positive regions (AT-rich regions). Silver staining revealed only one pair of medium chromosomes with NOR.  相似文献   

18.
Triple staining with fluorochromes (DA/DAPI/CMA) and C-banding were used to characterize the composition of Pseudonannolene strinatii heterochromatin. C-banding showed C+ bands of different labeling intensity on chromosomes 1 and 2 in some cells. Fluorochrome staining revealed DAPI+ regions corresponding to the C-banding pattern, indicating that the heterochromatin of this species is abundant in AT-rich sequences.  相似文献   

19.
Sequential staining with a counterstain-contrasted fluorescent banding technique (chromomycin A3-distamycin A-DAPI) revealed the occurrence of distamycin A-4,6-diamidino-2-phenylindole (DA-DAPI) staining heterochromatin in the centromeric regions of chromosomes 33, 36, 37, and 38 in the wolf (Canis lupus pallipes) and of chromosomes 13, 16, and 23 in the blue fox (Alopex lagopus). The red fox (Vulpes vulpes) lacked such regions. Staining with DAPI--actinomycin D produced a QFH-type banding pattern with clearcut differences in the staining behaviour of DA-DAPI positive regions between these three canid species. Staining with the fluorochrome D 287/170 did not preferentially highlight any of the DA-DAPI positive regions in any of them. Counterstain-enhanced chromomycin A3 R-banding and studies of nucleolus organizer region location and activity confirmed a close relationship between the karyotype of the wolf and the domestic dog. Few heterochromatic marker bands were encountered in these two species, but heterochromatin polymorphism was evident in the blue fox.  相似文献   

20.
The aim of this work is to characterize Nephilengys cruentata in relation to the diploid number, chromosome morphology, type of sex determination chromosome system, chromosomes bearing the Nucleolar Organizer Regions (NORs), C-banding pattern, and AT or GC repetitive sequences. The chromosome preparations were submitted to standard staining (Giemsa), NOR silver impregnation, C-banding technique, and base-specific fluorochrome staining. The analysis of the cells showed 2n = 24 and 2n = 26 chromosomes in the embryos, and 2n = 26 in the ovarian cells, being all the chromosomes acrocentric. The long arm of the pairs 1, 2 and 3 showed an extensive negative heteropycnotic area when the mitotic metaphases were stained with Giemsa. The sexual chromosomes did not show differential characteristics that allowed to distinguish them from the other chromosomes of the complement. Considering the diploid numbers found in N. cruentata and the prevalence of X1X2 sex determination chromosome system in Tetragnathidae, N. cruentata seems to possess 2n = 24 = 22 + X1X2 in the males, and 2n = 26 = 22 + X1X1X2X2 in the females. The pairs 1, 2 and 3 showed NORs which are coincident with the negative heteropycnotic patterns. Using the C-banding technique, the pericentromeric region of the chromosomes revealed small quantity or even absence of constitutive heterochromatin, differing of the C-banding pattern described in other species of spiders. In N. cruentata the fluorochromes DAPI/DA, DAPI/MM and CMA3/DA revealed that the constitutive heterochromatin is rich in AT bases and the NORs possess repetitive sequences of GC bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号