首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissimilatory arsenate-reducing bacteria have been implicated in the mobilization of arsenic from arsenic-enriched sediments. An As(V)-reducing bacterium, designated strain GBFH, was isolated from arsenic-contaminated sediments of Lake Coeur d'Alene, Idaho. Strain GBFH couples the oxidation of formate to the reduction of As(V) when formate is supplied as the sole carbon source and electron donor. Additionally, strain GBFH is capable of reducing As(V), Fe(III), Se(VI), Mn(IV) and a variety of oxidized sulfur species. 16S ribosomal DNA sequence comparisons reveal that strain GBFH is closely related to Desulfitobacterium hafniense DCB-2(T) and Desulfitobacterium frappieri PCP-1(T). Comparative physiology demonstrates that D. hafniense and D. frappieri, known for reductively dechlorinating chlorophenols, are also capable of toxic metal or metalloid respiration. DNA-DNA hybridization and comparative physiological studies suggest that D. hafniense, D. frappieri, and strain GBFH should be united into one species. The isolation of an Fe(III)- and As(V)-reducing bacterium from Lake Coeur d'Alene suggests a mechanism for arsenic mobilization in these contaminated sediments while the discovery of metal or metalloid respiration in the genus Desulfitobacterium has implications for environments cocontaminated with arsenious and chlorophenolic compounds.  相似文献   

2.
Strain MPA‐C3 was isolated by incubating arsenic‐bearing sediments under anaerobic, mesophilic conditions in minimal media with acetate as the sole source of energy and carbon, and As(V) as the sole electron acceptor. Following growth and the respiratory reduction of As(V) to As(III), a yellow precipitate formed in active cultures, while no precipitate was observed in autoclaved controls, or in uninoculated media supplemented with As(III). The precipitate was identified by X‐ray diffraction as alacranite, As8S9, a mineral previously only identified in hydrothermal environments. Sequencing of the 16S rRNA gene indicated that strain MPA‐C3 is a member of the Deferribacteres family, with relatively low (90%) identity to Denitrovibrio acetiphilus DSM 12809. The arsenate respiratory reductase gene, arrA, was sequenced, showing high homology to the arrA gene of Desulfitobacterium halfniense. In addition to As(V), strain MPA‐C3 utilizes NO3?, Se(VI), Se(IV), fumarate and Fe(III) as electron acceptors, and acetate, pyruvate, fructose and benzoate as sources of carbon and energy. Analysis of a draft genome sequence revealed multiple pathways for respiration and carbon utilization. The results of this work demonstrate that alacranite, a mineral previously thought to be formed only chemically under hydrothermal conditions, is precipitated under mesophilic conditions by the metabolically versatile strain MPA‐C3.  相似文献   

3.
The health of millions is threatened by the use of groundwater contaminated with sediment-derived arsenic for drinking water and irrigation purposes in Southeast Asia. The microbial reduction of sorbed As(V) to the potentially more mobile As(III) has been implicated in release of arsenic into groundwater, but to date there have been few studies of the microorganisms that can mediate this transformation in aquifers. With the use of stable isotope probing of nucleic acids, we present evidence that the introduction of a proxy for organic matter ((13)C-labeled acetate) stimulated As(V) reduction in sediments collected from a Cambodian aquifer that hosts arsenic-rich groundwater. This was accompanied by an increase in the proportion of prokaryotes closely related to the dissimilatory As(V)-reducing bacteria Sulfurospirillum strain NP-4 and Desulfotomaculum auripigmentum. As(V) respiratory reductase genes (arrA) closely associated with those found in Sulfurospirillum barnesii and Geobacter uraniumreducens were also detected in active bacterial communities utilizing (13)C-labeled acetate in microcosms. This study suggests a direct link between inputs of organic matter and the increased prevalence and activity of organisms which transform As(V) to the potentially more mobile and thus hazardous As(III) via dissimilatory As(V) reduction.  相似文献   

4.
Aims: To isolate and characterize an anaerobic bacterial strain from the deeper polluted lagoon sediment able to use as electron acceptors [As(V)] and sulfate (), using lactate as an electron donor. Methods and Results: Methods for isolation from polluted lagoon sediments included anaerobic enrichment cultures in the presence of As(V) and . Reduction of As(V) to As(III) was observed during the growth of the bacterial strain, and the final concentration of As(III) was lower than the initial As(V) one, suggesting the immobilization of As(III) in the yellow precipitate. The precipitate was identified by energy dispersive spectroscopy X‐ray as arsenic sulfide. Scanning electron microscopy (SEM) revealed rod‐shaped bacterial cells embedded in the precipitate, where net‐like formations strictly related to the bacterial cells were visible. The surface of the precipitate showed the adhesion of bacterial cells, forming clusters. Transmission electron microscopy (TEM) also highlighted precipitates inside the bacterial cells and on their surface. Following 16S rRNA sequencing, the bacterial strain 063 was assigned to the genus Desulfosporosinus. Conclusions: This study reports, for the first time, the isolation from the polluted lagoon sediments of a strain capable of respiring and using As(V) and as electron acceptors with lactate as the sole carbon and energy source with the formation of an arsenic sulfide precipitate. Significance and Impact of the Study: The identification of these properties provides novel insight into the possible use of the anaerobic strain in bioremediation processes and also adds to the knowledge on the biogeochemical cycling of arsenic.  相似文献   

5.
Synchrotron radiation extended X-ray absorption fine structure (SR EXAFS) was employed to study the transformation of coordination environment and the redox speciation of arsenic in a newly discovered arsenic hyperaccumulator, Cretan brake (Pteris cretica L. var nervosa Thunb). It showed that the arsenic in the plant mainly coordinated with oxygen, except that some arsenic coordinated with S as As-GSH in root. The complexation of arsenic with GSH might not be the predominant detoxification mechanism in Cretan brake. Although some arsenic in root presented as As(V) in Na2HAsO4 treatments, most of arsenic in plant presented as As(III)-O in both treatments, indicating that As(V) tended to be reduced to As(III) after it was taken up into the root, and arsenic was kept as As(III) when it was transported to the above-ground tissues. The reduction of As(V) primarily proceeded in the root.  相似文献   

6.
Dissimilatory arsenate-reducing bacteria have been implicated in the mobilization of arsenic from arsenic-enriched sediments. An As(V)-reducing bacterium, designated strain GBFH, was isolated from arsenic-contaminated sediments of Lake Coeur d'Alene, Idaho. Strain GBFH couples the oxidation of formate to the reduction of As(V) when formate is supplied as the sole carbon source and electron donor. Additionally, strain GBFH is capable of reducing As(V), Fe(III), Se(VI), Mn(IV) and a variety of oxidized sulfur species. 16S ribosomal DNA sequence comparisons reveal that strain GBFH is closely related to Desulfitobacterium hafniense DCB-2T and Desulfitobacterium frappieri PCP-1T. Comparative physiology demonstrates that D. hafniense and D. frappieri, known for reductively dechlorinating chlorophenols, are also capable of toxic metal or metalloid respiration. DNA-DNA hybridization and comparative physiological studies suggest that D. hafniense, D. frappieri, and strain GBFH should be united into one species. The isolation of an Fe(III)- and As(V)-reducing bacterium from Lake Coeur d'Alene suggests a mechanism for arsenic mobilization in these contaminated sediments while the discovery of metal or metalloid respiration in the genus Desulfitobacterium has implications for environments cocontaminated with arsenious and chlorophenolic compounds.  相似文献   

7.
Incubation of anoxic salt marsh sediment slurries with 10 mM As(V) resulted in the disappearance over time of the As(V) in conjunction with its recovery as As(III). No As(V) reduction to As(III) occurred in heat-sterilized or formalin-killed controls or in live sediments incubated in air. The rate of As(V) reduction in slurries was enhanced by addition of the electron donor lactate, H(inf2), or glucose, whereas the respiratory inhibitor/uncoupler dinitrophenol, rotenone, or 2-heptyl-4-hydroxyquinoline N-oxide blocked As(V) reduction. As(V) reduction was also inhibited by tungstate but not by molybdate, sulfate, or phosphate. Nitrate inhibited As(V) reduction by its action as a preferred respiratory electron acceptor rather than as a structural analog of As(V). Nitrate-respiring sediments could reduce As(V) to As(III) once all the nitrate was removed. Chloramphenicol blocked the reduction of As(V) to As(III) in nitrate-respiring sediments, suggesting that nitrate and arsenate were reduced by separate enzyme systems. Oxidation of [2-(sup14)C]acetate to (sup14)CO(inf2) by salt marsh and freshwater sediments was coupled to As(V). Collectively, these results show that reduction of As(V) in sediments proceeds by a dissimilatory process. Bacterial sulfate reduction was completely inhibited by As(V) as well as by As(III).  相似文献   

8.
Previous work has shown that microbial communities in As-mobilizing sediments from West Bengal were dominated by Geobacter species. Thus, the potential of Geobacter sulfurreducens to mobilize arsenic via direct enzymatic reduction and indirect mechanisms linked to Fe(III) reduction was analyzed. G. sulfurreducens was unable to conserve energy for growth via the dissimilatory reduction of As(V), although it was able to grow in medium containing fumarate as the terminal electron acceptor in the presence of 500 muM As(V). There was also no evidence of As(III) in culture supernatants, suggesting that resistance to 500 muM As(V) was not mediated by a classical arsenic resistance operon, which would rely on the intracellular reduction of As(V) and the efflux of As(III). When the cells were grown using soluble Fe(III) as an electron acceptor in the presence of As(V), the Fe(II)-bearing mineral vivianite was formed. This was accompanied by the removal of As, predominantly as As(V), from solution. Biogenic siderite (ferrous carbonate) was also able to remove As from solution. When the organism was grown using insoluble ferrihydrite as an electron acceptor, Fe(III) reduction resulted in the formation of magnetite, again accompanied by the nearly quantitative sorption of As(V). These results demonstrate that G. sulfurreducens, a model Fe(III)-reducing bacterium, did not reduce As(V) enzymatically, despite the apparent genetic potential to mediate this transformation. However, the reduction of Fe(III) led to the formation of Fe(II)-bearing phases that are able to capture arsenic species and could act as sinks for arsenic in sediments.  相似文献   

9.
As a cost-effective, efficient and environmental friendly method for the remediation of contaminated soils and waters, phytoremediation of arsenic-con- taminated soils has drawn more and more attention[1]. The plants with the special ability to accumulate arse-nic (hyperaccumulators) are a prerequisite for phy-toremediation. Cretan brake (Pteris cretica L. var nervosa Thunb) has been shown to accumulate arsenic as much as 694 mg/kg in pinna in field investigation[2], and such elevated arsenic…  相似文献   

10.
Arsenic contaminated rhizospheric soils of West Bengal, India were sampled for arsenic resistant bacteria that could transform different arsenic forms. Staphylococcus sp. NBRIEAG-8 was identified by16S rDNA ribotyping, which was capable of growing at 30,000?mg?l(-1) arsenate [As(V)] and 1,500?mg?l(-1) arsenite [As(III)]. This bacterial strain was also characterized for arsenical resistance (ars) genes which may be associated with the high-level resistance in the ecosystems of As-contaminated areas. A comparative proteome analysis was conducted with this strain treated with 1,000?mg?l(-1) As(V) to identify changes in their protein expression profiles. A 2D gel analysis showed a significant difference in the proteome of arsenic treated and untreated bacterial culture. The change in pH of cultivating growth medium, bacterial growth pattern (kinetics), and uptake of arsenic were also evaluated. After 72?h of incubation, the strain was capable of removing arsenic from the culture medium amended with arsenate and arsenite [12% from As(V) and 9% from As(III)]. The rate of biovolatilization of As(V) was 23% while As(III) was 26%, which was determined indirectly by estimating the sum of arsenic content in bacterial biomass and medium. This study demonstrates that the isolated strain, Staphylococcus sp., is capable for uptake and volatilization of arsenic by expressing ars genes and 8 new upregulated proteins which may have played an important role in reducing arsenic toxicity in bacterial cells and can be used in arsenic bioremediation.  相似文献   

11.
Five arsenic-resistant bacterial strains (designated MP1400, MP1400a, MP1400d, APSLA3, and BPSLA3) were isolated from soils collected at the Alps region (Italy), which showed no contamination by arsenic. Phylogenetic analysis of the 16S rRNA gene sequences assigned them to the genera Pseudomonas and Bacillus. Bacillus sp. strain 1400d and Pseudomonas spp. strains APSLA3 and MP1400 showed higher tolerance to As(III), as indicated by minimum inhibitory concentrations of 10 mmol/L. Pseudomonas sp. strain MP1400 exhibited higher tolerance to As(V) (minimum inhibitory concentration of 135 mmol/L). The isolated arsenic-resistant strains were able to reduce As(V) to As(III), especially Pseudomonas sp. strain MP1400 reducing 2 mmol/L of As(V) to As(III) within 24 h. The results suggest that the isolated bacterial strains play a role in the arsenic biogeochemical cycle of arsenic-poor soils in the Alps mount area.  相似文献   

12.
Industrial progress has resulted in threatening concentrations of toxic metals in various areas of the world. Bioremediation is an economical alternative to chemical methods. Bacteria resistant to As(III), As(V), Cr, Co, Cu, Cd, Hg, Ni, Pb, Se, and Zn were isolated from the wastewater treatment plant of Kasur, Pakistan. Highest resistance against all metals was exhibited by MX-1, MX-3, MX-4, and MX-5. The isolates possessed dual ability to oxidize as well as to reduce As. Highest As(V) reduction (454 µM) was exhibited by MX-1, while most As(III) oxidation was shown by MX-3 (170 µM). The isolates were also capable of reducing Cr(VI), and maximum Cr(VI) reduction (500 µM) was exhibited by MX-3. Transformation of DH5α with MX-1 plasmid showed that resistance genes for As(III), As(V), Cr, Cd, Se, Hg, and Ni were plasmid borne, while in case of MX-3, resistance genes for As(III), As(V), Co, Cu, Se, Pb, Zn, and Ni were present on plasmid. MX-1 and MX-3 were also positive for auxin production (37 and 32.96 µg ml?1, respectively). MX-3 was also found to produce hydrogen cyanide (HCN) and solubilized phosphate. These isolates promoted plant (Vigna radiata) growth both in the presence and absence of the metals. MX-1, MX-3, and MX-5 were identified as Bacillus subtilis, Bacillus safensis, and Bacillus cereus through 16S rRNA gene sequencing, respectively. Such bacteria having multiple traits of resisting multiple metals, dual ability to oxidize/reduce As, and reduce Cr(VI) along with the ability to support plant growth are good tools for remediation of metal-contaminated sites and its cultivation.  相似文献   

13.
The hydrothermally influenced sediments of Tutum Bay, Ambitle Island, Papua New Guinea, are ideal for investigating the chemolithotrophic activities of micro-organisms involved in arsenic cycling because hydrothermal vents there expel fluids with arsenite (As(III)) concentrations as high as 950 μg L(-1) . These hot (99 °C), slightly acidic (pH ~6), chemically reduced, shallow-sea vent fluids mix with colder, oxidized seawater to create steep gradients in temperature, pH, and concentrations of As, N, Fe, and S redox species. Near the vents, iron oxyhydroxides precipitate with up to 6.2 wt% arsenate (As(V)). Here, chemical analyses of sediment porewaters from 10 sites along a 300-m transect were combined with standard Gibbs energies to evaluate the energy yields (-ΔG(r)) from 19 potential chemolithotrophic metabolisms, including As(V) reduction, As(III) oxidation, Fe(III) reduction, and Fe(II) oxidation reactions. The 19 reactions yielded 2-94 kJ mol(-1) e(-) , with aerobic oxidation of sulphide and arsenite the two most exergonic reactions. Although anaerobic As(V) reduction and Fe(III) reduction were among the least exergonic reactions investigated, they are still potential net metabolisms. Gibbs energies of the arsenic redox reactions generally correlate linearly with pH, increasing with increasing pH for As(III) oxidation and decreasing with increasing pH for As(V) reduction. The calculated exergonic energy yields suggest that micro-organisms could exploit diverse energy sources in Tutum Bay, and examples of micro-organisms known to use these chemolithotrophic metabolic strategies are discussed. Energy modeling of redox reactions can help target sampling sites for future microbial collection and cultivation studies.  相似文献   

14.
The toxic and carcinogenic effects of arsenic may be mediated by both inorganic and methylated arsenic species. The methylation of arsenic(III) is thought to take place via sequential oxidative methylation and reduction steps to form monomethylarsenic (MMA) and dimethylarsenic (DMA) species, but recent evidence indicates that glutathione complexes of arsenic(III) can be methylated without oxidation. The kinetics of arsenic methylation were determined in freshly isolated hepatocytes from male B6C3F1 mice. Hepatocytes (>90% viability) were isolated by collagenase perfusion and suspended in Williams' Medium E with various concentrations of arsenic(III) (sodium m-arsenite). Aliquots of the lysed cell suspension were analyzed for arsenic species by hydride generation-atomic absorption spectrometry. The formation of MMA(III) from sodium arsenite (1 microM) was linear with respect to time for >90 min. DMA(III) formation did not become significant until 60 min. MMA(V) and DMA(V) were not consistently observed in the incubations. These results suggest that the glutathione complex mechanism of methylation plays an important role in arsenic biotransformation in mouse hepatocytes. Metabolism of arsenic(V) was not observed in mouse hepatocytes, consistent with inhibition of arsenic(V) active cellular uptake by phosphate in the medium. The formation of MMA(III) increased with increasing arsenic(III) concentrations up to approximately 2 microM and declined thereafter. The concentration dependence is consistent with a saturable methylation reaction accompanied by uncompetitive substrate inhibition of the reaction by arsenic(III). Kinetic analysis of the data suggested an apparent K(M) of approximately 3.6 microM arsenic(III), an apparent V(max) of approximately 38.9 microg MMA(III) formed/L/h/million cells, and an apparent K(I) of approximately 1.3 microM arsenic(III). The results of this study can be used in the physiologically based pharmacokinetic model for arsenic disposition in mice to predict the concentration of MMA(III) in liver and other tissues.  相似文献   

15.
Arsenic absorption by rice (Oryza sativa, L.) in relation to the chemical form and concentration of arsenic added in nutrient solution was examined. A 4 × 3 × 2 factorial experiment was conducted with treatments consisting of four arsenic chemical forms [arsenite, As(III); arsenate, As(V); monomethyl arsenic acid, MMAA; and dimethyl arsenic acid, DMAA], three arsenic concentrations [0.05, 0.2, and 0.8 mg As L-1], and two cultivars [Lemont and Mercury] with a different degree of susceptibility to straighthead, a physiological disease attributed to arsenic toxicity. Two controls, one for each cultivar, were also included. Arsenic phytoavailability and phytotoxicity are determined primarily by the arsenic chemical form present. Application of DMAA increased total dry matter production. While application of As(V) did not affect plant growth, both As(III) and MMAA were phytotoxic to rice. Availability of arsenic to rice followed the trend: DMAA<As(V)<MMAA<As(III). Upon absorption, DMAA was readily translocated to the shoot. Arsenic(III), As(V), and MMAA accumulated in the roots. With increased arsenic application rates the arsenic shoot/root concentration decreased for the As(III) and As(V) treatments. Monomethyl arsenic acid (MMAA), however, was translocated to the shoot upon increased application. The observed differential absorption and translocation of arsenic chemical forms by rice is possibly responsible for the straighthead disorder attributed to arsenic.  相似文献   

16.
The animal biopolymers prepared from hen eggshell membrane and broiler chicken feathers, which are byproducts of the poultry-processing industry, were evaluated for the removal of the oxyanions selenium [Se(IV) and Se(VI)] and arsenic [As(III) and As(V)] from aqueous solutions. The biopolymers were found to be effective at removing Se(VI) from solution. Optimal Se(IV) and Se(VI) removal was achieved at pH 2.5–3.5. At an initial Se concentration of 100 mg/L (1.3 m M), the eggshell membrane removed approx 90% Se(VI) from the solution. Arsenic was removed less effectively than Se, but the chemical modification of biopolymer carboxyl groups dramatically enhanced the As(V) sorption capacity. Se(VI) and As(V) sorption isotherms were developed at optimal conditions and sorption equilibrium data fitted the Langmuir isotherm model. The maximum uptakes by the Langmuir model were about 37.0 mg/g and 20.7 mg/g of Se(VI) and 24.2 mg/g and 21.7 mg/g of As(V) for eggshell membrane and chicken feathers, respectively.  相似文献   

17.
Because arsenate [As(V)] reduction by bacteria can significantly enhance arsenic mobility in the environment, it is important to be able to predict when this activity will occur. Currently, two bacterial systems are known that specifically reduce As(V), namely, a respiratory system (encoded by the arr genes) and a detoxification system (encoded by the ars genes). Here we analyze the conditions under which these two systems are expressed in Shewanella sp. strain ANA-3. The ars system is expressed under both aerobic and anaerobic conditions, whereas the arr system is only expressed anaerobically and is repressed by oxygen and nitrate. When cells are grown on As(V), the arr system is maximally induced during exponential growth, with peak expression of the ars system occurring at the beginning of stationary phase. Both the arr and ars systems are specifically induced by arsenite [As(III)], but the arr system is activated by a concentration of As(III) that is 1,000 times lower than that required for the arsC system (< or =100 nM versus < or =100 microM, respectively). A double mutant was constructed that does not reduce As(V) under any growth conditions. In this strain background, As(V) is capable of inducing the arr system at low micromolar concentrations, but it does not induce the ars system. Collectively, these results demonstrate that the two As(V) reductase systems in ANA-3 respond to different amounts and types of inorganic arsenic.  相似文献   

18.
Arsenic trioxide (As(III) in solution) has been shown to be the most active single agent in combating acute promyelocytic leukemia (APL). It is metabolized and excreted via urine as monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and As(V), along with excess As(III). In our study eight APL patients were treated (intravenously) with 0.15 mg As2O3/kg/day. During the therapy As(III) and its metabolites were followed in pre- and post-infusion urine using HPLC for separation followed by on-line detection using hydride generation-atomic fluorescence spectrometry. Five patients had a normal excretion pattern of residual arsenic compounds in morning pre-infusion urine, with 15–25 % of As(III), 35–55 % of DMA, 25–30 % of MMA and 1–5 % of As(V), while three patients showed unexpected exceptions from typical excretion patterns of arsenic compounds (i) a high DMA/MMA ratio (factor 5.3), (ii) severe As(III) oxidation (10.2 % As(III) converted to As(V)) or (iii) the presence of an excessive amount of As(III) (average 30.4 % of total arsenic). Intriguing was the occurrence of post-infusion oxidation of As(III) to As(V) observed in almost all patients and being especially high (>40 %) in patient with increased residual As(V). Results indicate that arsenic metabolites patterns can be unpredictable. Observed high levels of un-metabolised As(III) are a warning signal for side effects and for routine determination of arsenic metabolites during first days of treatment. High or low percentages of MMA or DMA did not show any observable effect on treatment results, while clear presence of post-infusion As(V) supports theoretical claims of in vivo oxidation (detoxification) of As(III) to As(V) associated with various metabolic processes.  相似文献   

19.
Arsenite oxidation and arsenate respiration by a new Thermus isolate   总被引:5,自引:0,他引:5  
A new microbial strain was isolated from an arsenic-rich terrestrial geothermal environment. The isolate, designated HR13, was identified as a Thermus species based on 16S rDNA phylogenetic relationships and close sequence similarity within the Thermus genus. Under aerobic conditions, Thermus HR13 was capable of rapidly oxidizing inorganic As(III) to As(V). As(III) was oxidized at a rate approximately 100-fold greater than abiotic rates. Metabolic energy was not gained from the oxidation reaction. In the absence of oxygen, Thermus HR13 grew by As(V) respiration coupled with lactate oxidation. The ability to oxidize and reduce arsenic has not been previously described within the Thermus genus.  相似文献   

20.
Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V) to As (III). Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号