首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The asymmetric positioning of internal organs on the left or right side of the body is highly conserved in vertebrates and relies on a Nodal signaling pathway acting on the left side of the embryo. Whether the same pathway also regulates left-right asymmetry in invertebrates and what is the evolutionary origin of the mechanisms controlling left-right determination are not known. Here, we show that nodal regulates left-right asymmetry in the sea urchin but that, intriguingly, its expression is reversed compared to vertebrates. Nodal signals emitted from the right side of the larva prevent the right coelomic pouch from forming the imaginal rudiment. Inhibition of Nodal signaling after gastrulation causes formation of an ectopic rudiment on the right side, leading to twinned urchins after metamorphosis. In contrast, ectopic activation of the pathway prevents formation of the rudiment. Our results show that the mechanisms responsible for left-right determination are conserved within basal deuterostomes.  相似文献   

2.
Protein kinase inhibitor (PKI) is an endogenous inhibitor of cAMP-dependent protein kinase A (PKA). We have found that the alpha-isoform of PKI (PKIalpha) is asymmetrically expressed along the left-right (L-R) axis in chick embryos. At stage 6, PKIalpha is expressed on the right side of the node, and this asymmetric expression continues until stage 7+. After stage 8, PKIalpha expression returns symmetric. Treatment of embryos with antisense PKIalpha oligonucleotides increased the incidence of reversed heart looping. Antisense oligonucleotides also induced ectopic expression of the left-specific genes Nodal and Pitx2, and suppressed the expression of the right-specific gene SnR in the right lateral plate mesoderm. Similarly, treatment with PKA activators forskolin and Sp-cAMPs resulted in both reversed heart looping and bilateral expression of NODAL: Ectopic activin induced PKIalpha on the left side of the node, while ectopic Shh and anti-Shh antibody had no effect on PKIalpha expression. Taken together, these data suggest that PKIalpha induced by an activin-like molecule, through the inhibition of PKA activity, suppresses the Nodal-Pitx2 pathway on the right side of the body.  相似文献   

3.
The alignment of the left-right (LR) body axis relative to the anteroposterior (AP) and dorsoventral (DV) axes is central to the organization of the vertebrate body plan and is controlled by the node/organizer. Somitogenesis plays a key role in embryo morphogenesis as a principal component of AP elongation. How morphogenesis is coupled to axis specification is not well understood. We demonstrate that Wnt3a is required for LR asymmetry. Wnt3a activates the Delta/Notch pathway to regulate perinodal expression of the left determinant Nodal, while simultaneously controlling the segmentation clock and the molecular oscillations of the Wnt/beta-catenin and Notch pathways. We provide evidence that Wnt3a, expressed in the primitive streak and dorsal posterior node, acts as a long-range signaling molecule, directly regulating target gene expression throughout the node and presomitic mesoderm. Wnt3a may also modulate the symmetry-breaking activity of mechanosensory cilia in the node. Thus, Wnt3a links the segmentation clock and AP axis elongation with key left-determining events, suggesting that Wnt3a is an integral component of the trunk organizer.  相似文献   

4.
5.
6.
7.
During left-right (L-R) axis formation, Nodal is expressed in the node and has a central role in the transfer of L-R information in the vertebrate embryo. Bone morphogenetic protein (BMP) signaling also has an important role for maintenance of gene expression around the node. Several members of the Cerberus/Dan family act on L-R patterning by regulating activity of the transforming growth factor-β (TGF-β) family. We demonstrate here that chicken Dan plays a critical role in L-R axis formation. Chicken Dan is expressed in the left side of the node shortly after left-handed Shh expression and before the appearance of asymmetrically expressed genes in the lateral plate mesoderm (LPM). In vitro experiments revealed that DAN inhibited BMP signaling but not NODAL signaling. SHH had a positive regulatory effect on Dan expression while BMP4 had a negative effect. Using overexpression and RNA interference-mediated knockdown strategies, we demonstrate that Dan is indispensable for Nodal expression in the LPM and for Lefty-1 expression in the notochord. In the perinodal region, expression of Dan and Nodal was independent of each other. Nodal up-regulation by DAN required NODAL signaling, suggesting that DAN might act synergistically with NODAL. Our data indicate that Dan plays an essential role in the establishment of the L-R axis by inhibiting BMP signaling around the node.  相似文献   

8.
The determination of left-right body asymmetry in mouse embryos depends on the interplay of molecules in a highly sensitive structure, the node. Here, we show that the localization of Cerl2 protein does not correlate to its mRNA expression pattern, from 3-somite stage onwards. Instead, Cerl2 protein displays a nodal flow-dependent dynamic behavior that controls the activity of Nodal in the node, and the transmission of the laterality information to the left lateral plate mesoderm (LPM). Our results indicate that Cerl2 initially localizes and prevents the activation of Nodal genetic circuitry on the right side of the embryo, and later its right-to-left translocation shutdowns Nodal activity in the node. The consequent prolonged Nodal activity in the node by the absence of Cerl2 affects local Nodal expression and prolongs its expression in the LPM. Simultaneous genetic removal of both Nodal node inhibitors, Cerl2 and Lefty1, sustains even longer and bilateral this LPM expression.  相似文献   

9.
A model of left-right axis formation in the chick involves inhibition of bone morphogenetic proteins by the antagonist Car as a mechanism of upregulating Nodal in the left lateral plate mesoderm. By contrast, expression of CFC, a competence factor, which is absolutely required for Nodal signaling in the lateral plate mesoderm is dependent on a functional BMP signaling pathway. We have therefore investigated the relationship between BMP and Nodal in further detail. We implanted BMP2 and Noggin-expressing cells into the left lateral plate and paraxial mesoderm and observed a strong upregulation of Nodal and its target genes Pitx2 and Nkx3.2. In addition Cfc, the Nodal type II receptor ActrIIa and Snr were found to depend on BMP signaling for their expression. Comparison of the expression domains of Nodal, Bmp2, Car and Cfc revealed co-expression of Nodal, Cfc and Bmp2, while Car and Nodal only partially overlapped. Ectopic application of BMP2, Nodal, and Car as well as combinations of this signaling molecules to the right lateral plate mesoderm revealed that BMP2 and Car need to synergize in order to specify left identity. We propose a novel model of left-right axis formation, which involves BMP as a positive regulator of Nodal signaling in the chick embryo.  相似文献   

10.
Nodal factors play crucial roles during embryogenesis of chordates. They have been implicated in a number of developmental processes, including mesoderm and endoderm formation and patterning of the embryo along the anterior-posterior and left-right axes. We have analyzed the function of the Nodal signaling pathway during the embryogenesis of the sea urchin, a non-chordate organism. We found that Nodal signaling plays a central role in axis specification in the sea urchin, but surprisingly, its first main role appears to be in ectoderm patterning and not in specification of the endoderm and mesoderm germ layers as in vertebrates. Starting at the early blastula stage, sea urchin nodal is expressed in the presumptive oral ectoderm where it controls the formation of the oral-aboral axis. A second conserved role for nodal signaling during vertebrate evolution is its involvement in the establishment of left-right asymmetries. Sea urchin larvae exhibit profound left-right asymmetry with the formation of the adult rudiment occurring only on the left side. We found that a nodal/lefty/pitx2 gene cassette regulates left-right asymmetry in the sea urchin but that intriguingly, the expression of these genes is reversed compared to vertebrates. We have shown that Nodal signals emitted from the right ectoderm of the larva regulate the asymmetrical morphogenesis of the coelomic pouches by inhibiting rudiment formation on the right side of the larva. This result shows that the mechanisms responsible for patterning the left-right axis are conserved in echinoderms and that this role for nodal is conserved among the deuterostomes. We will discuss the implications regarding the reference axes of the sea urchin and the ancestral function of the nodal gene in the last section of this review.  相似文献   

11.
12.
The bilateral symmetry of the mouse embryo is broken by leftward fluid flow in the node. However, it is unclear how this directional flow is then translated into the robust, left side-specific Nodal gene expression that determines and coordinates left-right situs throughout the embryo. While manipulating Nodal and Lefty gene expression, we have observed phenomena that are indicative of the involvement of a self-enhancement and lateral-inhibition (SELI) system. We constructed a mathematical SELI model that not only simulates, but also predicts, experimental data. As predicted by the model, Nodal expression initiates even on the right side. These results indicate that directional flow represents an initial small difference between the left and right sides of the embryo, but is insufficient to determine embryonic situs. Nodal and Lefty are deployed as a SELI system required to amplify this initial bias and convert it into robust asymmetry.  相似文献   

13.
Specification of the left-right axis during embryonic development is critical for the morphogenesis of asymmetric organs such as the heart, lungs, and stomach. The first known left-right asymmetry to occur in the mouse embryo is a leftward fluid flow in the node that is created by rotating cilia on the node surface. This flow is followed by asymmetric expression of Nodal and its inhibitor Cerl2 in the node. Defects in cilia and/or fluid flow in the node lead to defective Nodal and Cerl2 expression and therefore incorrect visceral organ situs. Here we show the cilia protein Arl13b is required for left right axis specification as its absence results in heterotaxia. We find the defect originates in the node where Cerl2 is not downregulated and asymmetric expression of Nodal is not maintained resulting in symmetric expression of both genes. Subsequently, Nodal expression is delayed in the lateral plate mesoderm (LPM). Symmetric Nodal and Cerl2 in the node could result from defects in either the generation and/ or the detection of Nodal flow, which would account for the subsequent defects in the LPM and organ positioning.  相似文献   

14.
Nodal activity in the left lateral plate mesoderm (LPM) is required to activate left-sided Nodal signaling in the epithalamic region of the zebrafish forebrain. Epithalamic Nodal signaling subsequently determines the laterality of neuroanatomical asymmetries. We show that overactivation of Wnt/Axin1/beta-catenin signaling during late gastrulation leads to bilateral epithalamic expression of Nodal pathway genes independently of LPM Nodal signaling. This is consistent with a model whereby epithalamic Nodal signaling is normally bilaterally repressed, with Nodal signaling from the LPM unilaterally alleviating repression. We suggest that Wnt signaling regulates the establishment of the bilateral repression. We identify a second role for the Wnt pathway in the left/right regulation of LPM Nodal pathway gene expression, and finally, we show that at later stages Axin1 is required for the elaboration of concordant neuroanatomical asymmetries.  相似文献   

15.
The Lefty subfamily of TGFbeta signaling molecules has been implicated in early development in mouse, zebrafish, and chick. Here, we show that Xenopus lefty (Xlefty) is expressed both bilaterally in symmetric midline domains and unilaterally in left lateral plate mesoderm and anterior dorsal endoderm. To examine the roles of Xlefty in left-right development, we created a system for scoring gut asymmetry and examined the effects of unilateral Xlefty misexpression on gut development, heart development, and Xnr-1 and XPitx2 expression. In contrast to the unilateral effects of Vg1, Activin, Nodal, or BMPs, targeted expression of Xlefty in either the left or the right side of Xenopus embryos randomized the direction of heart looping, gut coiling, and left-right positioning of the gut and downregulated the asymmetric expression of Xnr-1 and XPitx2. It is currently thought that Lefty proteins act as feedback inhibitors of Nodal signaling. However, this would not explain the effects of right-sided Xlefty misexpression. Here, we show that Xlefty interacts with the signaling pathways of other members of the TGFbeta family during left-right development. Results from coexpression of Xlefty and Vg1 indicate that Xlefty can nullify the effects of Vg1 ectopic expression and that Xlefty is downstream of left-sided Vg1 signaling. Results from coexpression of Xlefty and XBMP4 indicate that XLefty and XBMP4 interact both synergistically and antagonistically in a context-dependent manner. We propose a model in which interactions of Xlefty with multiple members of the TGFbeta family enhance the differences between the right-sided BMP/ALK2/Smad pathway and the left-sided Vg1/anti-BMP/Nodal pathway, leading to left-right morphogenesis of the gut and heart.  相似文献   

16.
Members of the EGF-CFC family of proteins have recently been implicated as essential cofactors for Nodal signaling. Here we report the isolation of chick CFC and describe its expression pattern, which appears to be similar to Cfc1 in mouse. During early gastrulation, chick CFC was asymmetrically expressed on the left side of Hensen's node as well as in the emerging notochord, prechordal plate, and lateral plate mesoderm. Subsequently, its expression became confined to the heart fields, notochord, and posterior mesoderm. Implantation experiments suggest that chick CFC expression in the lateral plate mesoderm is dependent on BMP signaling, while in the midline its expression depends on an Activin-like signal. The asymmetric expression domain within Hensen's node was not affected by application of FGF8, Noggin, or Shh antibody. Implantation of cells expressing human or mouse CFC2, or chick CFC on the right side of Hensen's node randomized heart looping without affecting expression of genes involved in left-right axis formation, including SnR, Nodal, Car, or Pitx2. Application of antisense oligodeoxynucleotides to the midline of Hamburger-Hamilton stage 4-5 embryos also randomized heart looping, but in contrast to the overexpression experiments, antisense oligodeoxynucleotide treatment resulted in bilateral expression of Nodal, Car, Pitx2, and NKX3.2, whereas Lefty1 expression in the midline was transiently lost. Application of the antisense oligodeoxynucleotides to the lateral plate mesoderm abolished Nodal expression. Thus, chick CFC seems to have a dual function in left-right axis formation by maintaining Nodal expression in the lateral plate mesoderm and controlling expression of Lefty1 expression in the midline territory.  相似文献   

17.
Wnt signaling regulates embryo development and tissue homeostasis, and its deregulation leads to an array of diseases, including cancer. Dapper1 has been shown to be a key negative regulator of Wnt signaling. However, its function and regulation remain poorly understood. In this study, we report that 14-3-3β interacts with human Dapper1 (hDpr1). The interaction is dependent on protein kinase A (PKA)-mediated phosphorylation of hDpr1 at Ser-237 and Ser-827. 14-3-3β binding attenuates the ability of hDpr1 to promote Dishevelled (Dvl) degradation, thus enhancing Wnt signaling. We further provide evidence that PKA-mediated Dpr1 phosphorylation may contribute to growth and tumor formation of colon cancer Caco2 cells. Finally, we show that cyclooxygenase-2 expression and PKA activation are positively correlated with Dvl protein levels in colon cancer samples. Together, our findings establish a novel layer of regulation of Wnt signaling by PKA via the 14-3-3-Dpr1-Dvl axis.  相似文献   

18.
In the mouse and chick embryo, the node plays a central role in generating left-right (LR) positional information. Using several different strategies, we provide evidence in the mouse that bone morphogenetic protein 4 (Bmp4) is required independently in two different sites for node morphogenesis and for LR patterning. Bmp4 expression in the trophoblast-derived extra-embryonic ectoderm is essential for the normal formation of the node and primitive streak. However, tetraploid chimera analysis demonstrates that Bmp4 made in epiblast-derived tissues is required for robust LR patterning, even when normal node morphology is restored. In the absence of embryonic Bmp4, the expression of left-side determinants such as Nodal and Lefty2 is absent in the left lateral plate mesoderm (LPM). Noggin-mediated inhibition of Bmp activity in cultured wild-type embryos results in suppression of Nodal expression in the LPM. Thus, unlike previous models proposed in the chick embryo in which Bmp4 suppresses left-sided gene expression, our results suggest that Bmp acts as a positive facilitator of the left-sided molecular cascade and is required for Nodal induction and maintenance in the left LPM.  相似文献   

19.
Nodal and BMP signals are important for establishing left-right (LR) asymmetry in vertebrates. In sea urchins, Nodal signaling prevents the formation of the rudiment on the right side. However, the opposing pathway to Nodal signaling during LR axis establishment is not clear. Here, we revealed that BMP signaling is activated in the left coelomic pouch, specifically in the veg2 lineage, but not in the small micromeres. By perturbing BMP activities, we demonstrated that BMP signaling is required for activating the expression of the left-sided genes and the formation of the left-sided structures. On the other hand, Nodal signals on the right side inhibit BMP signaling and control LR asymmetric separation and apoptosis of the small micromeres. Our findings show that BMP signaling is the positive signal for left-sided development in sea urchins, suggesting that the opposing roles of Nodal and BMP signals in establishing LR asymmetry are conserved in deuterostomes.  相似文献   

20.
胡广伟  张珍珍  高焕 《遗传》2021,(2):134-141
两侧对称动物左右体轴建立机制研究是发育生物学领域重要的基础科学问题之一.文昌鱼(amphioxus)由于其特殊的进化地位以及与脊椎动物相似的胚胎发育模式和身体构筑方式,是研究动物左右体轴建立机制的理想模式物种.近年来随着文昌鱼室内全人工繁育技术、高效显微注射技术和基因敲除技术的建立,国内外学者在左右体轴建立机制研究上取...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号