首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pH on the kinetic parameters (Kms, Vs) of the reaction of adrenaline and Fe(II) (More's salt) oxidation by ceruloplasmin isolated from human donor blood was investigated. It was assumed that the imidazole group of histidine is functionally important for the above reactions. For Fe(II) the effect of the ionizeable group was observed during substrate binding to the ceruloplasmin molecule, whereas in the course of the adrenaline oxidation reaction it manifests itself during catalytic interaction of the substrate with the enzyme. The organic substrate can bind both to the protonated and to the non-protonated form of the enzyme. Fe(II) interacts only with the protonated form of the protein. In both cases, the rate-limiting step of the oxidase reaction is preceded by a single step, i.e., proton binding. The schemes describing the order of proton attachment in the course of the above reactions are proposed.  相似文献   

2.
【目的】探究不同菌浓度和亚铁浓度条件下,Acidovorax sp. strain BoFeN1介导的厌氧亚铁氧化耦合硝酸盐还原过程的动力学和次生矿物。【方法】构建包含菌BoFeN1、硝酸盐、亚铁的厌氧培养体系,测试硝酸根、亚硝酸根、乙酸根、亚铁等浓度,并收集次生矿物,采用XRD、SEM进行矿物种类和形貌表征。【结果】在微生物介导硝酸盐还原耦合亚铁氧化的体系中,高菌浓度促进硝酸盐还原,对亚铁氧化也有一定促进作用;高浓度亚铁在低菌浓度下氧化反应速率和程度降低,但是在高菌浓度下无明显影响;亚铁浓度越高次生矿物结晶度越高,但对硝酸盐还原具有一定抑制作用。在微生物介导亚硝酸盐还原耦合亚铁氧化的体系中,高的菌浓度和亚铁浓度都会促进亚硝酸盐还原,但亚铁氧化的次生矿物会对亚硝酸盐的微生物还原产生较强的抑制作用,次生矿物的种类和结晶度主要受亚铁浓度影响。【结论】硝酸盐还原主要是生物反硝化作用,亚硝酸盐还原包含生物反硝化和化学反硝化两部分,在硝酸盐体系中亚铁氧化与次生矿物生成是受生物和化学反硝化作用的共同影响,但亚硝酸盐体系中亚铁氧化与次生矿物生成主要是受化学反硝化作用影响。该研究可为深入理解厌氧微生物介导铁氮耦合反应机制提供基础数据和理论支撑。  相似文献   

3.
The oxidation of methyl linoleate (ML) was studied in the presence of Fe(II) alone and its combination with either ascorbic acid (AsAH(2)) or hydrogen peroxide (H(2)O(2)) at different molar ratios. Reactions were carried out in micellar solutions of TTAB (tetradecyltrimethylammonium bromide) and SDS (sodium dodecyl sulfate), respectively, and were monitored by UV spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Fe(II) alone was able to catalyze the oxidation of ML in micellar solutions of TTAB, but not in those of SDS. The combination of H(2)O(2) with Fe(II) showed catalytic effect only in the TTAB medium, leading to different ML and Fe(II) oxidation kinetics compared to the Fe(II)-only catalyzed reactions. The AsAH(2)/Fe(II) combination demonstrated to be a good catalyst for the oxidation of ML in SDS micellar solutions, but not in TTAB micellar solutions; the activity of the catalyst was dependent on the AsAH(2)/Fe(II) molar ratio. The obtained results confirm that, for the ML oxidation to be initiated, the presence of a Fe(II)/Fe(III) couple is essential, which is related to the pH of micellar solutions. The catalytic properties of the AsAH(2)/Fe(II) combination were explained by taking into account the anti-oxidant and pro-oxidant properties of AsAH(2), as well as the possible formation of an iron/ascorbate complex as the initiator of the ML oxidation.  相似文献   

4.
Neutrophilic Fe(II) oxidizing microorganisms are found in many natural environments. It has been hypothesized that, at low oxygen concentrations, microbial iron oxidation is favored over abiotic oxidation. Here, we compare the kinetics of abiotic Fe(II) oxidation to oxidation in the presence of the bacterium Leptothrix cholodnii Appels isolated from a wetland sediment. Rates of Fe(II) oxidation were determined in batch experiments at 20°C, pH 7 and oxygen concentrations between 3 and 120 μmol/l. The reaction progress in experiments with and without cells exhibited two distinct phases. During the initial phase, the oxygen dependency of microbial Fe(II) oxidation followed a Michaelis-Menten rate expression (KM = 24.5 ± 10 μmol O2/l, vmax = 1.8 ± 0.2 μmol Fe(II)/(l min) for 108 cells/ml). In contrast, abiotic rates increased linearly with increasing oxygen concentrations. At similar oxygen concentrations, initial Fe(II) oxidation rates were faster in the experiments with bacteria. During the second phase, the accumulated iron oxides catalyzed further oxidative iron precipitation in both abiotic and microbial reaction systems. That is, abiotic oxidation also dominated the reaction progress in the presence of bacteria. In fact, in some experiments with bacteria, iron oxidation during the second phase proceeded slower than in the absence of bacteria, possibly due to an inhibitory effect of extracellular polymeric substances on the growth of Fe(III) oxides. Thus, our results suggest that the competitive advantage of microbial iron oxidation in low oxygen environments may be limited by the autocatalytic nature of abiotic Fe(III) oxide precipitation, unless the accumulation of Fe(III) oxides is prevented, for example, through a close coupling of Fe(II) oxidation and Fe(III) reduction.  相似文献   

5.
Despite previous detection of hydroxyl radical formation during iron deposition into ferritin, no reports exist in the literature concerning how it might affect ferritin function. In the present study, hydroxyl radical formation during Fe(II) oxidation by apoferritin was found to be contingent on the "ferroxidase" activity (i.e., H subunit composition) exhibited by apoferritin. Hydroxyl radical formation was found to affect both the stoichiometry and kinetics of Fe(II) oxidation by apoferritin. The stoichiometry of Fe(II) oxidation by apoferritin in an unbuffered solution of 50 mM NaCl, pH 7.0, was approximately 3.1 Fe(II)/O(2) at all iron-to-protein ratios tested. The addition of HEPES as an alternate reactant for the hydroxyl radical resulted in a stoichiometry of about 2 Fe(II)/O(2) at all iron-to-protein ratios. HEPES functioned to protect apoferritin from oxidative modification, for its omission from reaction mixtures containing Fe(II) and apoferritin resulted in alterations to the ferritin consistent with oxidative damage. The kinetic parameters for the reaction of recombinant human H apoferritin with Fe(II) in HEPES buffer (100 mM) were: K(m) = 60 microM, k(cat) = 10 s(-1), and k(cat)/K(m) = 1.7 x 10(5) M(-1) x (-1). Collectively, these results contradict the "crystal growth model" for iron deposition into ferritin and, while our data would seem to imply that the ferroxidase activity of ferritin is adequate in facilitating Fe(II) oxidation at all stages of iron deposition into ferritin, it is important to note that these data were obtained in vitro using nonphysiologic conditions. The possibility that these findings may have physiological significance is discussed.  相似文献   

6.
To find out the mechanism of ceruloplasmin (CP) oxidase activity CP interaction with organic substrates adrenaline (AD), catechol, p-phenylenediamine) and Fe2+ was investigated. CP was shown to interact with the above substrates according to the Theorell-Chance mechanism to form a kinetically insignificant ternary complex. The oxygen molecule binds first to CP followed by the molecule of electron donor: the inhibition of enzymatic oxidation by the reaction product is competitive. The effects of pH on kinetic parameters (Ksm, Vs) of oxidation reactions of AD and Fe2+ in the presence of CP were examined. AD was shown to be able to bind both to the protonated and to the non-protonated form of CP whereas Fe2+ interacts only with the protonated form: the rate of catalytic event (Vs) is influenced by pH in the presence of AD whereas in the presence of Fe2+ only binding to CP (Ksm) is affected by pH. Kinetic schemes describing the order of binding of hydrogen ions in the course of above reactions are proposed.  相似文献   

7.
Fe(II) oxidation reaction was carried out using an acidophilic microorganism, Thiobacillus ferrooxidans. Four different parameters such as pH, Fe(II), Fe(III) and biomass concentration were studied. The oxida-tion reaction follows a pseudo first order rate equation. Apparent reaction rate constants were calculated. Unified rate equation was developed using the four parameters. Along with oxidation, a part of the iron also was precipitated. The extent of Fe(III) precipitation in each case was calculated. © Rapid Science 1998  相似文献   

8.
Protein ferroxidase site(s), which catalyze the reaction between ferrous ion and dioxygen, have long been thought to play a role in core formation in ferritin; however, the mechanism of the reaction has never been studied in detail. In the present work, the enzymatic activity of ferritin was examined using oximetry, the net Fe2+ oxidation reaction being as follows. [formula: see text] The reaction exhibits saturation kinetics with respect to both Fe2+ and O2 (apparent Michaelis constants: Km,Fe = 0.35 +/- 0.01 mM and Km,O2 = 0.14 +/- 0.03 mM). The enzyme has a turnover number kcat = 80 +/- 3 min-1 at 20 degrees C with maximal activity at pH 7. The kinetics are discussed in terms of two mechanisms, one involving monomeric and the other dimeric iron protein complexes. In both instances Fe(II) oxidation occurs in 1-electron steps. Zinc(II) is a competitive inhibitor of iron(II) oxidation at Zn2+/apoprotein ratios > or = 6 (inhibitor constant KI,Zn = 0.067 +/- 0.011 mM) but appears to be a noncompetitive inhibitor at lower ratios (< or = 2), indicating the presence of more than one type of zinc binding site on the protein. At increments of 50 Fe2+/protein or less, all of the iron is oxidized via the protein ferroxidase site(s), independent of the amount of core already present. However, when larger increments are employed, some iron oxidation appears to occur on the surface of the mineral core. The results of these studies emphasize the role of the protein shell in all phases of core growth and confirm the presence of a functionally important catalytic site in ferritin in addition to other binding sites on the protein for iron.  相似文献   

9.
Semin BK  Ghirardi ML  Seibert M 《Biochemistry》2002,41(18):5854-5864
The donation of electrons by Mn(II) and Fe(II) to Y(Z*) through the high-affinity (HA(Z)) site in Mn-depleted photosystem II (PSII) membranes has been studied by flash-probe fluorescence yield measurements. Mn(II) and Fe(II) donate electrons to Y(Z*) with about the same efficiency, saturating this reaction at the same concentration (ca. 5 microM). However, following a short incubation of the membranes with 5 microM Fe(II), but not with Mn(II) in room light, added Mn(II) or Fe(II) can no longer be photooxidized by Y(Z)(*). This blocking effect is caused by specifically bound, photooxidized Fe [> or =Fe(III)] and is accompanied by a delay in the fluorescence yield decay kinetics attributed to the slowing down of the charge recombination rate between Q(a-) and Y(Z*). Exogenously added Fe(III), on the other hand, does not donate electrons to Y(Z*), does not block the donation of electrons by added Mn(II) and Fe(II), and does not change the kinetics of the decay of the fluorescence yield. These results demonstrate that the light-dependent oxidation of Fe(II) by Y(Z*) creates an Fe species that binds at the HA(Z) site and causes the blocking effect. The pH dependence of Mn(II) electron donation to Y(Z*) via the HA(Z) site and of the Fe-blocking effect is different. These results, together with sequence homologies between the C-terminal ends of the D1 and D2 polypeptides of the PSII reaction center and several diiron-oxo enzymes, suggest the involvement of two or perhaps more (to an upper limit of four to five) bound iron cations per reaction center of PSII in the blocking effect. Similarities in the interaction of Fe(II) and Mn(II) with the HA(Z) Mn site of PSII during the initial steps of the photoactivation process are discussed. The Fe-blocking effect was also used to investigate the relationship between the HA(Z) Mn site and the HA sites on PSII for diphenylcarbazide (DPC) and NH2OH oxidation. Blocking of the HA(Z) site with specifically bound Fe leads to the total inhibition of electron donation to Y(Z*) by DPC. Since DPC and Mn(II) donation to PSII is noncompetitive [Preston, C., and Seibert, M. (1991) Biochemistry 30, 9615-9624], the Fe bound to the HA(Z) site can also block the DPC donation site. On the other hand, electron donation by NH2OH to PSII still occurs in Fe-blocked membranes. Since hydroxylamine does not reduce the Fe [> or =Fe(III)] specifically bound to the HA(Z) site, NH2OH must donate to Y(Z*) through its own site or directly to P680+.  相似文献   

10.
The catalytic activity of phosvitin in Fe(II) oxidation and the addition of iron to transferrin were studied under various conditions. It was concluded that the Fe(II) oxidized by phosvitin would bind to apotransferrin, although an appreciable fraction of Fe(III) remained bound to phosvitin. Fe(III) also migrated from phosvitin to apotransferrin. This reaction was first-order with respect to Fe(III)-phosvitin concentration with a half-time (t1/2) of 10 min, and a first-order rate constant, k=0.069min-1, in 700 muM-phosphate buffer, pH 7.2, at 30 degrees C. The catalysis of the oxidation of Fe(III) by phosvitin was proportional to O2 concentration, and is quite different from the relative O2 independence of Fe(II) oxidation as catalysed by ferroxidase. A scheme for the mobilization and transfer of iron in the chicken, including the role of ferroxidase, phosyitin and transferrin, is presented.  相似文献   

11.
Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (< 0.0001, pseudo R2 = 0.79) in soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2O2) in addition to Fe(II). Reactions between Fe(II) and H2O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short‐term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation, and may help explain the rapid turnover of complex C molecules in these soils.  相似文献   

12.
Anoxygenic phototrophic Fe(II) oxidation is usually considered to be a lithoautotrophic metabolism that contributes to primary production in Fe-based ecosystems. In this study, we employed Rhodobacter capsulatus SB1003 as a model organism to test the hypothesis that phototrophic Fe(II) oxidation can be coupled to organic carbon acquisition. R. capsulatus SB1003 oxidized Fe(II) under anoxic conditions in a light-dependent manner, but it failed to grow lithoautotrophically on soluble Fe(II). When the strain was provided with Fe(II)-citrate, however, growth was observed that was dependent upon microbially catalyzed Fe(II) oxidation, resulting in the formation of Fe(III)-citrate. Subsequent photochemical breakdown of Fe(III)-citrate yielded acetoacetic acid that supported growth in the light but not the dark. The deletion of genes (RRC00247 and RRC00248) that encode homologs of atoA and atoD, required for acetoacetic acid utilization, severely impaired the ability of R. capsulatus SB1003 to grow on Fe(II)-citrate. The growth yield achieved by R. capsulatus SB1003 in the presence of citrate cannot be explained by lithoautotrophic growth on Fe(II) enabled by indirect effects of the ligand [such as altering the thermodynamics of Fe(II) oxidation or preventing cell encrustation]. Together, these results demonstrate that R. capsulatus SB1003 grows photoheterotrophically on Fe(II)-citrate. Nitrilotriacetic acid also supported light-dependent growth on Fe(II), suggesting that Fe(II) oxidation may be a general mechanism whereby some Fe(II)-oxidizing bacteria mine otherwise inaccessible organic carbon sources.  相似文献   

13.
With the aim to verify if Fe(III) ions accumulated in a network of Ca-polygalacturonate (PGA) may promote the oxidation of caffeic acid (CAF) the interaction at pH 5.0 between CAF and Fe(III) ions trapped in a PGA was studied. The sorption kinetics evidenced a great affinity of CAF towards the Fe-PGA matrix. Chromatographic tests showed that the interaction leads to the formation of products which can be considered as CAF oligomers characterized by FT-IR spectra similar to those of natural humic acids. Tests carried out under nitrogen suggest that at pH 5.0 oxygen does not affect the nature of these oxidation products. Oxygen was hypothesized to exert a direct action on the redox process by oxidizing the Fe(II) ions, produced by oxidation of CAF, to Fe(III) thus regenerating oxidizing sites. A possible mechanism of formation of the polymers was proposed that implies that the CAF oxidation leads to highly reactive species such as semiquinones which give rise, by an oxidative coupling reaction, to the formation of oligomers that can aggregate through secondary bonds to produce more complex structures as those that characterize humic acids.  相似文献   

14.
Bacterioferritin (EcBFR) of Escherichia coli is an iron-mineralizing hemoprotein composed of 24 identical subunits, each containing a dinuclear metal-binding site known as the "ferroxidase center." The chemistry of Fe(II) binding and oxidation and Fe(III) hydrolysis using H(2)O(2) as oxidant was studied by electrode oximetry, pH-stat, UV-visible spectrophotometry, and electron paramagnetic resonance spin trapping experiments. Absorption spectroscopy data demonstrate the oxidation of two Fe(II) per H(2)O(2) at the ferroxidase center, thus avoiding hydroxyl radical production via Fenton chemistry. The oxidation reaction with H(2)O(2) corresponds to [Fe(II)(2)-P](Z) + H(2)O(2) --> [Fe(III)(2)O-P](Z) + H(2)O, where [Fe(II)(2)-P](Z) represents a diferrous ferroxidase center complex of the protein P with net charge Z and [Fe(III)(2)O-P](Z) a micro-oxo-bridged diferric ferroxidase complex. The mineralization reaction is given by 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2FeOOH((core)) + 4H(+), where two Fe(II) are again oxidized by one H(2)O(2). Hydrogen peroxide is shown to be an intermediate product of dioxygen reduction when O(2) is used as the oxidant in both the ferroxidation and mineralization reactions. Most of the H(2)O(2) produced from O(2) is rapidly consumed in a subsequent ferroxidase reaction with Fe(II) to produce H(2)O. EPR spin trapping experiments show that the presence of EcBFR greatly attenuates the production of hydroxyl radical during Fe(II) oxidation by H(2)O(2), consistent with the ability of the bacterioferritin to facilitate the pairwise oxidation of Fe(II) by H(2)O(2), thus avoiding odd electron reduction products of oxygen and therefore oxidative damage to the protein and cellular components through oxygen radical chemistry.  相似文献   

15.
Shelf sediments underlying temperate and oxic waters of the Celtic Sea (NW European Shelf) were found to have shallow oxygen penetrations depths from late spring to late summer (2.2–5.8 mm below seafloor) with the shallowest during/after the spring-bloom (mid-April to mid-May) when the organic carbon content was highest. Sediment porewater dissolved iron (dFe, <0.15 µm) mainly (>85%) consisted of Fe(II) and gradually increased from 0.4 to 15 μM at the sediment surface to ~100–170 µM at about 6 cm depth. During the late spring this Fe(II) was found to be mainly present as soluble Fe(II) (>85% sFe, <0.02 µm). Sub-surface dFe(II) maxima were enriched in light isotopes (δ56Fe ?2.0 to ?1.5‰), which is attributed to dissimilatory iron reduction (DIR) during the bacterial decomposition of organic matter. As porewater Fe(II) was oxidised to insoluble Fe(III) in the surface sediment layer, residual Fe(II) was further enriched in light isotopes (down to ?3.0‰). Ferrozine-reactive Fe(II) was found in surface porewaters and in overlying core top waters, and was highest in the late spring period. Shipboard experiments showed that depletion of bottom water oxygen in late spring can lead to a substantial release of Fe(II). Reoxygenation of bottom water caused this Fe(II) to be rapidly lost from solution, but residual dFe(II) and dFe(III) remained (12 and 33 nM) after >7 h. Iron(II) oxidation experiments in core top and bottom waters also showed removal from solution but at rates up to 5-times slower than predicted from theoretical reaction kinetics. These data imply the presence of ligands capable of complexing Fe(II) and supressing oxidation. The lower oxidation rate allows more time for the diffusion of Fe(II) from the sediments into the overlying water column. Modelling indicates significant diffusive fluxes of Fe(II) (on the order of 23–31 µmol m?2 day?1) are possible during late spring when oxygen penetration depths are shallow, and pore water Fe(II) concentrations are highest. In the water column this stabilised Fe(II) will gradually be oxidised and become part of the dFe(III) pool. Thus oxic continental shelves can supply dFe to the water column, which is enhanced during a small period of the year after phytoplankton bloom events when organic matter is transferred to the seafloor. This input is based on conservative assumptions for solute exchange (diffusion-reaction), whereas (bio)physical advection and resuspension events are likely to accelerate these solute exchanges in shelf-seas.  相似文献   

16.
Lower Red Eyes is an acid mine drainage site in Pennsylvania where low-pH Fe(II) oxidation has created a large, terraced iron mound downstream of an anoxic, acidic, metal-rich spring. Aqueous chemistry, mineral precipitates, microbial communities, and laboratory-based Fe(II) oxidation rates for this site were analyzed in the context of a depositional facies model. Depositional facies were defined as pools, terraces, or microterracettes based on cm-scale sediment morphology, irrespective of the distance downstream from the spring. The sediments were composed entirely of Fe precipitates and cemented organic matter. The Fe precipitates were identified as schwertmannite at all locations, regardless of facies. Microbial composition was studied with fluorescence in situ hybridization (FISH) and transitioned from a microaerophilic, Euglena-dominated community at the spring, to a Betaproteobacteria (primarily Ferrovum spp.)-dominated community at the upstream end of the iron mound, to a Gammaproteobacteria (primarily Acidithiobacillus)-dominated community at the downstream end of the iron mound. Microbial community structure was more strongly correlated with pH and geochemical conditions than depositional facies. Intact pieces of terrace and pool sediments from upstream and downstream locations were used in flowthrough laboratory reactors to measure the rate and extent of low-pH Fe(II) oxidation. No change in Fe(II) concentration was observed with (60)Co-irradiated sediments or with no-sediment controls, indicating that abiotic Fe(II) oxidation was negligible. Upstream sediments attained lower effluent Fe(II) concentrations compared to downstream sediments, regardless of depositional facies.  相似文献   

17.
Single turnover reactions of the inducible nitric oxide synthase oxygenase domain (iNOSoxy) in the presence of several non alpha-amino acid N-hydroxyguanidines and guanidines were studied by stopped-flow visible spectroscopy, and compared with reactions using the native substrates L-arginine (L-arg) or N(omega)-hydroxy-L-arginine (NOHA). In experiments containing dihydrobiopterin, a catalytically incompetent pterin, and each of the studied substrates, L-arg, butylguanidine (BuGua), para-fluorophenylguanidine (FPhGua), NOHA, N-butyl- and N-(para-fluorophenyl)-N'-hydroxyguanidines (BuNOHG and FPhNOHG), the formation of a iron(II) heme-dioxygen intermediate (Fe(II)O2) was always observed. The Fe(II)O2 species then decayed to iron(III) iNOSoxy at rates that were dependent on the nature of the substrate. Identical reactions containing the catalytically competent cofactor tetrahydrobiopterin (BH4), iNOSoxy and the three N-hydroxyguanidines, all exhibited an initial formation of an Fe(II)O2 species that was successively converted to an Fe(III)NO complex and eventually to high-spin iron(III) iNOSoxy. The formation and decay kinetics of the Fe(III)NO complex did not vary greatly as a function of the N-hydroxyguanidine structure, but the formation of Fe(III)NO was substoichiometric in the cases of BuNOHG and FPhNOHG. Reactions between BH4-containing iNOSoxy and BuGua exhibited kinetics similar to those of the corresponding reaction with L-arginine, with formation of an Fe(II)O2 intermediate that was directly converted to high-spin iron(III) iNOSoxy. In contrast, no Fe(II)O2 intermediate was observed in the reaction of BH4-containing iNOSoxy and FPhGua. Multi-turnover reaction of iNOS with FPhGua did not lead to formation of NO or to hydroxylation of the substrate, contrary to reactions with BuGua or L-arg. Our results reveal how different structural and chemical properties of NOS substrate analogues can impact on the kinetics and reactivity of the Fe(II)O2 intermediate, and support an important role for substrate pKa during NOS oxygen activation.  相似文献   

18.
Microorganisms are known to participate in the weathering of primary phyllosilicate minerals through the production of organic ligands and acids and through the uptake of products of weathering. Here we show that the lithotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture described by Straub et al. (K. L. Straub, M. Benz, B. Schink, and F. Widdel, Appl. Environ. Microbiol. 62:1458–1460, 1996) can grow via oxidation of structural Fe(II) in biotite, a Fe(II)-rich trioctahedral mica found in granitic rocks. Oxidation of silt/clay-sized biotite particles was detected by a decrease in extractable Fe(II) content and simultaneous nitrate reduction. Mössbauer spectroscopy confirmed structural Fe(II) oxidation. Approximately 1.5 × 107 cells were produced per μmol of Fe(II) oxidized, in agreement with previous estimates of the growth yield of lithoautotrophic circumneutral-pH Fe(II)-oxidizing bacteria. Microbial oxidation of structural Fe(II) resulted in biotite alterations similar to those found in nature, including a decrease in the unit cell b dimension toward dioctahedral levels and Fe and K release. Structural Fe(II) oxidation may involve either direct enzymatic oxidation, followed by solid-state mineral transformation, or indirect oxidation as a result of the formation of aqueous Fe, followed by electron transfer from Fe(II) in the mineral to Fe(III) in solution. Although it is not possible to distinguish between these two mechanisms with available data, the complete absence of aqueous Fe in oxidation experiments favors the former alternative. The demonstration of microbial oxidation of structural Fe(II) suggests that microorganisms are directly responsible for the initial step in the weathering of biotite in granitic aquifers and the plant rhizosphere.  相似文献   

19.
The kinetics of iron binding by deferrioxamine B mesylate and the ramifications of this process upon iron-catalyzed lipid peroxidation were assessed. The relative rates of Fe(III) binding by deferrioxamine varied for the chelators tested as follows: ADP greater than AMP greater than citrate greater than histidine greater than EDTA. The addition of a fivefold molar excess of deferrioxamine to that of Fe(III) did not result in complete binding (within 10 min) for any of the Fe(III) chelates tested except ADP:Fe(III). The rates of Fe(III) binding by deferrioxamine were greater at lower pH and when the competing chelator concentration was high in relationship to iron. The relatively slow binding of Fe(III) by deferrioxamine also affected lipid peroxidation, an iron-dependent process. The addition of deferrioxamine to an ascorbate- and ADP:Fe(III)-dependent lipid peroxidation system resulted in a time-dependent inhibition or stimulation of malondialdehyde formation (i.e., lipid peroxidation), depending on the ratio of deferrioxamine to iron. Converse to Fe(III), the rates of Fe(II) binding by deferrioxamine from the chelators tested above were rapid and complete (within 1 min), and resulted in the oxidation of Fe(II) to Fe(III). Lipid peroxidation dependent on Fe(II) autoxidation was stimulated by the addition of deferrioxamine. Malondialdehyde formation in this system was inhibited by the addition of catalase, and a similar extent of lipid peroxidation was achieved by substituting hydrogen peroxide for deferrioxamine. Collectively, these results suggest that the kinetics of Fe(III) binding by deferrioxamine is a slow, variable process, whereas Fe(II) binding is considerably faster. The binding of either valence of iron by deferrioxamine may result in variable effects on iron-catalyzed processes, such as lipid peroxidation, either via slow binding of Fe(III) or the rapid binding of Fe(II) with concomitant Fe(II) oxidation.  相似文献   

20.
Anaerobic microbial oxidation of Fe(II) was only recently discovered and very little is known about this metabolism. We recently demonstrated that several dissimilatory perchlorate-reducing bacteria could utilize Fe(II) as an electron donor under anaerobic conditions. Here we report on a more in-depth analysis of Fe(II) oxidation by one of these organisms, Dechlorosoma suillum. Similarly to most known nitrate-dependent Fe(II) oxidizers, D. suillum did not grow heterotrophically or lithoautotrophically by anaerobic Fe(II) oxidation. In the absence of a suitable organic carbon source, cells rapidly lysed even though nitrate-dependent Fe(II) oxidation was still occurring. The coupling of Fe(II) oxidation to a particular electron acceptor was dependent on the growth conditions of cells of D. suillum. As such, anaerobically grown cultures of D. suillum did not mediate Fe(II) oxidation with oxygen as the electron acceptor, while conversely, aerobically grown cultures did not mediate Fe(II) oxidation with nitrate as the electron acceptor. Anaerobic washed cell suspensions of D. suillum rapidly produced an orange/brown precipitate which X-ray diffraction analysis identified as amorphous ferric oxyhydroxide or ferrihydrite. This is similar to all other identified nitrate-dependent Fe(II) oxidizers but is in contrast to what is observed for growth cultures of D. suillum, which produced a mixed-valence Fe(II)-Fe(III) precipitate known as green rust. D. suillum rapidly oxidized the Fe(II) content of natural sediments. Although the form of ferrous iron in these sediments is unknown, it is probably a component of an insoluble mineral, as previous studies indicated that soluble Fe(II) is a relatively minor form of the total Fe(II) content of anoxic environments. The results of this study further enhance our knowledge of a poorly understood form of microbial metabolism and indicate that anaerobic Fe(II) oxidation by D. suillum is significantly different from previously described forms of nitrate-dependent microbial Fe(II) oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号