首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li H  Li F  Kwan M  He QY  Sun H 《Biopolymers》2005,77(4):173-183
DMT1, also known as Nramp2, is an iron transporter, and belongs to the family of Nramp proteins. Disease-causing mutations both in Nramp1 and Nramp2 occurring at the conserved two adjacent glycine residues located within the fourth transmembrane domain (TM4) suggest that TM4 may serve an important biological function. In the present study, we have determined the high-resolution structures of a synthetic peptide, corresponding to the sequence of the fourth transmembrane domain of rat DMT1 with G185D mutation, in membrane-mimetic environments (e.g., SDS micelles) using NMR spectroscopy and distance-geometry/simulated annealing calculations. The spatial structures showed alpha-helices without a kink in the middle portion of the peptide, with a highly flexible and poorly defined N-terminus. Both the N-terminus and the helical core of the peptide were embedded into the SDS micelles. Interestingly, the folding and membrane location of the C-terminus was pH dependent, being well-folded and inserted into SDS micelles only at a low pH value (4.0). The peptide exhibited amphipathic characteristics, with hydrophilic residues (Asp7, Thr11, Asp14, and Thr15) lying in one side of the helix, which provide a basis for the formation of water-filled channel architectures through self-associations. The significant broadening of the resonances of the hydrophilic residues Asp7, Thr11, and Asp14, which are buried inside SDS micelles, upon addition of Mn2+ further verified the possibility of the formation of a channel through which metal ions pass. The substitution of Gly7 by an aspartate residue neither significantly altered the structure and membrane location of the peptide nor abolished its properties of channel forming and metal permeation compared with the wild-type peptide.  相似文献   

2.
Nramp1 (natural resistance-associated macrophage protein 1) is an integral membrane protein with 12 putative transmembrane domains. As a proton-coupled divalent metal cation transporter, it is involved in defense against intracellular pathogens. Disease-causing mutation in Nramp1 occurring at glycine 169 located within the fourth transmembrane domain (TM4) suggests functional importance of this domain. In this paper, we study the three-dimensional structures of a peptide, corresponding to the TM4 of the wild-type Nramp1, in SDS micelles and 2, 2, 2-trifluoroethanol solvent using CD and NMR spectroscopies. We have found that an α-helix is predominantly induced in membrane-mimetic environments and the folding of the C-terminal residues is regulated by pH in SDS micelles. The peptide is embedded in SDS micelles and self-associated by coiled-coil interactions. The helix of the peptide in TFE is lengthened towards the N-terminus compared with those in SDS micelles at acidic pH and the self-association of the peptide is also observed in TFE. The fact that Mn2+ ions are accessible to Asp-14 located in the interior of SDS micelles is found and the binding affinity is increased with increasing pH. The self-association of the peptide may provide a path by which Mn2+ ions pass through the membrane.  相似文献   

3.
Xue R  Wang S  Qi H  Song Y  Wang C  Li F 《Biochimica et biophysica acta》2008,1778(6):1444-1452
Nramp1 (natural resistance-associated macrophage protein 1) is an integral membrane protein with 12 putative transmembrane domains. As a proton-coupled divalent metal cation transporter, it is involved in defense against intracellular pathogens. Disease-causing mutation in Nramp1 occurring at glycine 169 located within the fourth transmembrane domain (TM4) suggests functional importance of this domain. In this paper, we study the three-dimensional structures of a peptide, corresponding to the TM4 of the wild-type Nramp1, in SDS micelles and 2, 2, 2-trifluoroethanol solvent using CD and NMR spectroscopies. We have found that an alpha-helix is predominantly induced in membrane-mimetic environments and the folding of the C-terminal residues is regulated by pH in SDS micelles. The peptide is embedded in SDS micelles and self-associated by coiled-coil interactions. The helix of the peptide in TFE is lengthened towards the N-terminus compared with those in SDS micelles at acidic pH and the self-association of the peptide is also observed in TFE. The fact that Mn(2+) ions are accessible to Asp-14 located in the interior of SDS micelles is found and the binding affinity is increased with increasing pH. The self-association of the peptide may provide a path by which Mn(2+) ions pass through the membrane.  相似文献   

4.
Natural resistance associated macrophage protein 1 (Nramp1), an integral membrane protein with 12 predicted transmembrane domains (TMs), is a divalent cation transporter associated with infectious and autoimmune diseases. A naturally occurring mutation G169D within TM4 of Nramp1 leads to the loss of function, suggesting potential importance of TM4 for the biological function of the protein. In this study, we determine the three‐dimensional structure and topology of a synthetic peptide, del(T178), corresponding to Nramp1(164‐191) (basically consisting of the putative TM4 of Nramp1) with Thr178 deletion in TFE and SDS micelles using NMR and CD spectroscopic techniques, and compare the results with those of the wildtype peptide. Similarly to the wildtype peptide, the del(T178) peptide still forms an amphiphilic‐like α‐helical structure in both membrane mimics and is embedded in SDS micelles. Differently, whereas the wild‐type peptide forms a helix bundle with the hydrophilic side facing the interior of the bundle, the del(T178) peptide exists as a monomer in the membrane mimics and the hydrophilic side of the helix is located near the interface of SDS micelles. Moreover, a strongly cooperative protonation occurs between intramolecular Asp residues for the del(T178) peptide in SDS micelles, while the cooperative proton binding between intermolecular Asp residues was observed for the wildtype peptide. The difference in the results of the two peptides suggests that the deletion of Thr178 impairs intermolecular interaction of the peptide. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Ion channel-forming peptides enable us to study the conformational dynamics of a transmembrane helix as a function of sequence and environment. Molecular dynamics simulations are used to study the conformation and dynamics of three 22-residue peptides derived from the second transmembrane domain of the glycine receptor (NK4-M2GlyR-p22). Simulations are performed on the peptide in four different environments: trifluoroethanol/water; SDS micelles; DPC micelles; and a DMPC bilayer. A hierarchy of alpha-helix stabilization between the different environments is observed such that TFE/water < micelles < bilayers. Local clustering of trifluoroethanol molecules around the peptide appears to help stabilize an alpha-helical conformation. Single (S22W) and double (S22W,T19R) substitutions at the C-terminus of NK4-M2GlyR-p22 help to stabilize a helical conformation in the micelle and bilayer environments. This correlates with the ability of the W22 and R19 side chains to form H-bonds with the headgroups of lipid or detergent molecules. This study provides a first atomic resolution comparison of the structure and dynamics of NK4-M2GlyR-p22 peptides in membrane and membrane-mimetic environments, paralleling NMR and functional studies of these peptides.  相似文献   

6.
The natural resistance-associated macrophage protein (Nramp) family is functionally conserved in bacteria and eukarya; Nramp homologues function as proton-dependent membrane transporters of divalent metals. Sequence analyses indicate that five phylogenetic groups comprise the Nramp family, three bacterial and two eukaryotic, which are distinct from a more distantly related group of microbial sequences (Nramp outgroup). The Nramp family and outgroup share many conserved residues, suggesting they derived from a common ancestor and raising the possibility that the residues invariant in the Nramp family that correspond to residues which are different but also conserved in the outgroup represent candidate sites of functional divergence of the Nramp family. Four Nramp family-specific residues were identified within transmembrane domains 1, 6, and 11, and replaced by the corresponding invariant outgroup residues in the Escherichia coli Nramp ortholog (the proton-dependent manganese transporter, MntH of group A, EcoliA). The resulting mutants (Asp(34)Gly, Asn(37)Thr, His(211)Tyr, and Asn(401)Gly) were tested for both divalent metal uptake and proton transport; quasi-simultaneous analyses of uptake of metals and protons revealed for the first time protons and metals cotransport by a bacterial Nramp homologue. Additional mutations were studied for comparison (Asp(34)Asn, Asn(37)Asp and Asn(37)Val, Asn(401)Thr, His(211)Ala, His(216)Ala, and His(216)Arg). EcoliA activity was impaired after each of the Nramp/outgroup substitutions, as well as after more conservative replacements, showing that the tested sites are all important for metal uptake and metal-dependent H(+) transport. It is proposed that co-occurrence of these four Nramp-specific transmembrane residues may have contributed to the emergence of this family of metal and proton cotransporters.  相似文献   

7.
Slc11a1 is an integral membrane protein with 12 putative transmembrane domains (TMDs) and functions as a pH‐coupled divalent metal cation transporter. The conservation of three negatively charged residues in the TMD3 of Slc11 protein family implies the important role of this domain in the function of the proteins. However, aggregation of the transmembrane peptide in micelles prevents structural study of the peptide in these membrane‐mimetic environments by NMR spectroscopy. Here, we characterized the structure, position, and assembly model of Slc11a1‐TMD3 (Lys128‐Ile151) in SDS micelles by the NMR study of its Leu‐substituted peptide. It was found that the two‐site substitutions of Ala for Leu residues at positions 136 and 140 of TMD3 disrupt the aggregation without altering the secondary structure of the peptide. The Leu‐substituted peptide folds as an α‐helix spanning from Leu133 to Gly144 and embedded in the micelles. A Leu zipper is suggested to account for the self‐assembly of the wild‐type peptide in SDS micelles. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The hERG K+ channel undergoes rapid inactivation that is mediated by ‘collapse’ of the selectivity filter, thereby preventing ion conduction. Previous studies have suggested that the pore-helix of hERG may be up to seven residues longer than that predicted by homology with channels with known crystal structures. In the present work, we determined structural features of a peptide from the pore loop region of hERG (residues 600–642) in both sodium dodecyl sulfate (SDS) and dodecyl phosphocholine (DPC) micelles using NMR spectroscopy. A complete structure calculation was done for the peptide in DPC, and the localization of residues inside the micelles were analysed by using a water-soluble paramagnetic reagent with both DPC and SDS micelles. The pore-helix in the hERG peptide was only two–four residues longer at the N-terminus, compared with the pore helices seen in the crystal structures of other K+ channels, rather than the seven residues suggested from previous NMR studies. The helix in the peptide spanned the same residues in both micellar environments despite a difference in the localization inside the respective micelles. To determine if the extension of the length of the helix was affected by the hydrophobic environment in the two types of micelles, we compared NMR and X-ray crystallography results from a homologous peptide from the voltage gated potassium channel, KcsA.  相似文献   

9.
Transportan is a 27-residue peptide (GWTLN SAGYL LGKIN LKALA ALAKK IL-amide) which has the ability to penetrate into living cells carrying a hydrophilic load. Transportan is a chimeric peptide constructed from the 12 N-terminal residues of galanin in the N-terminus with the 14-residue sequence of mastoparan in the C-terminus and a connecting lysine. Circular dichroism studies of transportan and mastoparan show that both peptides have close to random coil secondary structure in water. Sodium dodecyl sulfate (SDS) micelles induce 60% helix in transportan and 75% helix in mastoparan. The 600 MHz (1)H NMR studies of secondary structure in SDS micelles confirm the helix in mastoparan and show that in transportan the helix is localized to the mastoparan part. The less structured N-terminus of transportan has a secondary structure similar to that of the same sequence in galanin [Ohman, A., et al. (1998) Biochemistry 37, 9169-9178]. The position of mastoparan and transportan relative to the SDS micelle surface was studied by adding spin-labeled 5-doxyl- or 12-doxyl-stearic acid or Mn2+ to the peptide/micelle system. The combined results show that the peptides are for the most part buried in the SDS micelles. Only the C-terminal parts of both peptides and the central segment connecting the two parts of transportan are clearly surface exposed. For mastoparan, the secondary chemical shifts of the amide protons were found to vary periodically and display a pattern almost identical to those reported for mastoparan in phospholipid bicelles [Vold, R., et al. (1997) J. Biomol. NMR 9, 329-335], indicating similar structures and interactions in the two membrane-mimicking environments.  相似文献   

10.
The structure of a synthetic peptide corresponding to the fifth membrane-spanning segment (M5) in Na(+),K(+)-ATPase in sodium dodecyl sulfate (SDS) micelles was determined using liquid-state nuclear magnetic resonance (NMR) spectroscopy. The spectra reveal that this peptide is substantially less alpha-helical than the corresponding M5 peptide of Ca(2+)-ATPase. A well-defined alpha-helix is shown in the C-terminal half of the peptide. Apart from a short helical stretch at the N-terminus, the N-terminal half contains a non-helical region with two proline residues and sequence similarity to a non-structured transmembrane element of the Ca(2+)-ATPase. Furthermore, this region spans the residues implicated in Na(+) and K(+) transport, where they are likely to offer the flexibility needed to coordinate Na(+) as well as K(+) during active transport.  相似文献   

11.
Solute carrier family 11 member 1 (Slc11a1) is a proton-mediated divalent metal cation transporter with 12 putative transmembrane domains. Variation in it reveals alterations in host resistance against intracellular pathogens. A naturally occurring glycine to aspartic acid mutation at position 169 (G169D) in the putative transmembrane domain 4 (TM4) makes mice susceptible to Salmonella typhimurim, Leishmania donovani, and Mycobacterium bovis. In this work, a 28-residue peptide corresponding to Slc11a1(164-191), including TM4 of Slc11a1, with G169D mutation is characterized using CD and NMR methods in 2,2,2-trifluoroethanol solvent and SDS micelles and the results of present study on the G169D peptide are compared with those of previous study on the wild-type peptide. Similarly to the wild-type peptide, the G169D peptide forms a predominantly alpha-helical structure and is totally embedded in SDS micelles as a homologous assembly. However, the G169D mutation changes the local conformation near the mutation site, the cooperative manner in proton binding of the residue Asp located in the center of SDS micelles and the interaction strength of this residue with Mn2+ ions.  相似文献   

12.
DMT1 (divalent metal ion transporter 1) is one member of a family of proton-coupled transporters that facilitate the cellular absorption of divalent metal ions. A pair of mutation-sensitive and highly conserved histidines in the sixth transmembrane domain (TM6) of DMT1 was found to be important for proton-metal ion cotransport. In the present work, we investigate the structures and locations of the peptides from TM6 of DMT1 and its H267A and H272A mutants in SDS micelles by CD and NMR methods. The circular dichroism studies show that the α-helix is a predominant conformation for the wildtype peptide and H267A mutant in SDS micelles, whereas the helicity is evidently decreased for H272A mutant. The pH value has little effect on the α-helical contents of the three peptides. The NMR studies indicate that the wildtype peptide in SDS micelles forms an “α-helix-extended segment-α-helix” structure in which the His267 locates near the central part of the extended segment, while the His272 is involved in the α-helical folding. Both histidines are buried in SDS micelles as evidenced by their pKa values. The structure of the wildtype peptide is evidently changed by the mutations of H267A and H272A. The H267A mutant forms an ordered structure consisting of an α-helix from the C-terminus to the central part and continuous turns in the residual part. The extended structure in the central part of the wildtype peptide is abolished by H267A mutation. The H272A mutation mainly induces unfolding of the short helix in the N-terminal side, while the short helix in the C-terminal side and unordered conformation in the central part remain. All the three peptides are embedded in SDS micelles, and the H267A mutant is inserted more deeply due to increasing hydrophobicity in the central part of the peptide. The specific “α-helix-extended segment-α-helix” structure of TM6 may have an important implication for the binding of the transporter to H+ and metal ions and the conformation change induced by the mutations of two highly conserved histidines may be correlated to the deficiency of the transport activity of DMT1.  相似文献   

13.
Schibli DJ  Montelaro RC  Vogel HJ 《Biochemistry》2001,40(32):9570-9578
The membrane-proximal tryptophan-rich region of the HIV transmembrane glycoprotein, gp41, plays an important role in the membrane fusion reaction. Using NMR spectroscopy, we have studied the tertiary structure of a synthetic 19-residue amidated peptide (NH2-KWASLWNWFNITNWLWYIK-CONH2) corresponding to this region in membrane-mimetic environments. Initial experiments in sodium dodecyl sulfate/H2O micelles and trifluoroethanol gave poor results, because of low solubility. However, in dodecylphosphocholine micelles, we obtained excellent 500 and 800 MHz NMR spectra, suggesting that the peptide has a preference for a zwitterionic membrane-like environment. The final NMR structures demonstrated a well-defined helical peptide with a backbone rmsd of 0.47 +/- 0.18 A. Four of the five tryptophan residues, as well as the tyrosine residue, formed a "collar" of aromatic residues along the axial length of the helix. By analogy to related tryptophan-rich antimicrobial peptides, the structure indicates that the aromatic residues of the HIV peptide are positioned within the membrane-water interface of a phospholipid bilayer. This is confirmed by the observation of direct NOEs between the aromatic residues of the peptide to the headgroup and interfacial protons of prototonated dodecylphosphocholine. The bulk of the polar residues are positioned on one face of this structure, with the hydrophobic phenylalanine side chain on the opposing face, forming an amphipathic structure. This work shows that the Trp-rich membrane-proximal region of HIV and related viruses can bind to the surfaces of zwitterioninc membranes in a "Velcro-like" manner.  相似文献   

14.
Two-dimensional HOHAHA and ROESY nuclear magnetic resonance techniques are used to obtain complete proton resonance assignments and to perform a conformational investigation of the neuropeptide neurotensin (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) in aqueous solution, methanol, and membrane-mimetic [deuterated sodium dodecylsulfate (SDS)] environments. Results suggest the absence of discernible elements of secondary structure in water and methanol. ROESY spectra confirm that Lys-Pro and Arg-Pro peptide bonds are all-trans, but that a significant population of cis Arg-Pro bonds arises in aqueous solution, which increases in the environment of SDS micelles. The conformational ensemble of the peptide is observed to narrow as it becomes bound through its cationic mid-region to SDS micelles, with the accompanying advent of local extended structure. The overall results indicate the inherent conformational flexibility of neurotensin, and emphasize the environmental dependence of conformation in peptides of medium length.  相似文献   

15.
Yan C  Digate RJ  Guiles RD 《Biopolymers》1999,49(1):55-70
Structural and dynamic properties of opioid peptide E have been examined in an sodium dodecyl sulfate (SDS) micelle. Structural and dynamic studies both indicate that this peptide exhibits greater segmental mobility than typical structured proteins. An nmr structural analysis of adrenal peptide E in SDS micelles indicated the presence of two well-defined beta-turns, one at the N-terminus encompassing residues 3 to 6, and the second in the region between residues 15 and 18. Certain side chain dihedral angles were also remarkably well defined, such as the chi 1 angle of F4, which exhibited a trans configuration. These calculated structures were based on a set of 9.5 restraints per residue. The backbone dynamics of peptide E in SDS micelles were examined through an analysis of 15N-relaxation parameters. An extended model-free analysis was used to interpret the relaxation data. The overall rotational correlation time is 19.7 ns. the average order parameter S2 is 0.66 +/- 0.15. The N-terminal loop region residues including G3 to R6 have an average order parameter of 0.70 +/- 0.23. The average order parameter lies somewhere between that observed for a random coil (e.g., S2 = 0.3) and that of a well-defined tertiary fold (e.g., S2 = 0.86). This suggests that peptide E in SDS micelles adopts a restricted range of conformations rather than a random coil. Based on the helical structure recently obtained for the highly homologous kappa-agonist dynorphin-A(1-17) and the beta-turn in the same region of peptide E, it is reasonable to assume that these two elements of secondary structure reflect different receptor subtype binding geometries. The intermediate order parameters observed for peptide E in an SDS micelle suggest a degree of dynamic mobility that may enable facile interconversion between helical and beta-turn geometries in the N-terminal agonist domain.  相似文献   

16.
EmrE, a multidrug resistance protein from Escherichia coli, renders the bacterium resistant to a variety of cytotoxic drugs by active translocation out of the cell. The 110-residue sequence of EmrE limits the number of structural possibilities that can be envisioned for this membrane protein. Four helix bundle models have been considered [Yerushalmi, H., Lebendiker, M., and Schuldiner, S. (1996) J. Biol. Chem. 271, 31044-31048]. The validity of EmrE structural models has been probed experimentally by investigations on overlapping peptides (ranging in length from 19 to 27 residues), derived from the sequence of EmrE. The choice of peptides was made to provide sequences of two complete, predicted transmembrane helices (peptides H1 and H3) and two helix-loop-helix motifs (peptides A and B). Peptide (B) also corresponds to a putative hairpin in a speculative beta-barrel model, with the "Pro-Thr-Gly" segment forming a turn. Structure determination in SDS micelles using NMR indicates peptide H1 to be predominantly helical, with helix boundaries in the micellar environment corroborating predicted helical limits. Peptide A adopts a helix-loop-helix structure in SDS micelles, and peptide B was also largely helical in micellar environments. An analogue peptide, C, in which the central "Pro-Thr-Gly" was replaced by "(D)Pro-Gly" displays local turn conformation at the (D)Pro-Gly segment, but neither a continuous helical stretch nor beta-hairpin formation was observed. This study implies that the constraints of membrane and micellar environments largely direct the structure of transmembrane peptides and proteins and study of judiciously selected peptide fragments can prove useful in the structural elucidation of membrane proteins.  相似文献   

17.
Trp-rich antimicrobial peptides play important roles in the host innate defense mechanisms of many plants, insects, and mammals. A new type of Trp-rich peptide, Ac-KWRRWVRWI-NH(2), designated Pac-525, was found to possess improved activity against both gram-positive and -negative bacteria. We have determined that the solution structures of Pac-525 bound to membrane-mimetic sodium dodecyl sulfate (SDS) micelles. The SDS micelle-bound structure of Pac-525 adopts an alpha-helical segment at residues Trp2, Arg3, and Arg4. The positively charged residues are clustered together to form a hydrophilic patch. The three hydrophobic residues Trp2, Val6, and Ile9 form a hydrophobic core. The surface electrostatic potential map indicates the three tryptophan indole rings are packed against the peptide backbone and form an amphipathic structure. Moreover, the reverse sequence of Pac-525, Ac-IWRVWRRWK-NH(2), designated Pac-525(rev), also demonstrates similar antimicrobial activity and structure in membrane-mimetic micelles and vesicles. A variety of biophysical and biochemical methods, including circular dichroism, fluorescence spectroscopy, and microcalorimetry, were used to show that Pac-525 interacted strongly with negatively charged phospholipid vesicles and induced efficient dye release from these vesicles, suggesting that the antimicrobial activity of Pac-525 may be due to interactions with bacterial membranes.  相似文献   

18.
The structures of the first and the second transmembrane segment of the bovine mitochondrial oxoglutarate carrier (OGC) were studied by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. Peptides 21-46 and 78-108 of its primary sequence were synthesized and structurally characterized in membrane-mimetic environments. CD data showed that at high concentrations of TFE (>50%) and SDS (>2%) both peptides assume alpha-helical structures, whereas in more hydrophilic environments only peptide 78-108 has a helical structure. (1)H-NMR spectra of the two peptides in TFE/water and SDS were fully assigned, and the secondary structures of the peptides were obtained from nuclear Overhauser effects, (3)J(alphaH-NH) coupling constants and alphaH chemical shifts. The three-dimensional solution structures of the peptides in TFE/water were generated by distance geometry calculations. A well-defined alpha-helix was found in the region K24-V39 of peptide 21-46 and in the region A86-F106 of peptide 78-108. We cannot exclude that in intact OGC the extension of these helices is longer. The helix of peptide 21-46 is essentially hydrophobic, whereas that of peptide 78-108 is predominantly hydrophilic.  相似文献   

19.
Xue R  Wang S  Wang C  Zhu T  Li F  Sun H 《Biopolymers》2006,84(3):329-339
Membrane protein Nramp1 (natural resistance-associated macrophage protein 1) is a pH-dependent divalent metal cation transporter that regulates macrophage activation in infectious and autoimmune diseases. A naturally occurring glycine to aspartic acid substitution at position 169 (G169D) within the transmembrane domain 4 (TM4) of Nramp1 makes mice susceptible to Leishmania donovani, Salmonella typhimurium, and Mycobacterium bovis. Here we present a structural and self-assembling study on two synthetic 24-residue peptides, corresponding to TM4 of mouse Nramp1 and its G169D mutant, respectively, in 1,1,1,3,3,3-hexafluoroisopropanol-d(2) (HFIP-d(2)) aqueous solution by nuclear magnetic resonance (NMR) spectroscopy. The results show that amphipathic alpha-helical structures are formed from residue Ile173 to Tyr187 for the wild-type peptide and from Trp168 to Tyr187 for the G169D mutant, respectively. The segment of the N-terminus from Leu167 to Leu172 is poorly structured for the wild-type peptide, whereas it is well defined for the G169D mutant. Both peptides aggregate to form a tetramer and the monomeric peptides in peptide bundles are structurally and orientationally similar. The intermolecular interactions in assemblies could be stronger in the C-terminal regions related to residues Phe180-Leu184 than those in the central helical segments for both peptides. The G169D mutation may change the size of the opening on the termini of assembly.  相似文献   

20.
Wang D  Song Y  Li J  Wang C  Li F 《Biochimica et biophysica acta》2011,1808(6):1639-1644
DMT1 is an integral membrane protein with 12 putative transmembrane domains. As a divalent metal ion transporter, it plays an important role in metal ion homeostasis from bacteria to human. Loss-function mutations at the conserved motif DPGN located within the first transmembrane domain (TMD1) of DMT1 indicate the significance of TMD1 in the biological function of the protein. In the present work, we study the structure, topology and metal ion binding of DMT1-TMD1 peptide by nuclear magnetic resonance using sodium dodecyl sulfate and dodecylphosphocholine micelles as membrane mimics. We find that the peptide forms an α-helix-extended segment-α-helix configuration in which the motif DPGN locates at the central flexible region. The N-terminal part of the peptide is deeply embedded in micelles, while the motif section and the C-terminal part are close to the surface of micelles. The peptide can bind to Mn2+ and Co2+ ions by the side chains of the negatively charged residues in the motif section and the C-terminal part of TMD1. The crucial role of the central flexible region and the C-terminal part of TMD1 in metal ion capture is confirmed by the binding of the N-terminal part truncated TMD1 to metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号