首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium/calmodulin-dependent multifunctional protein kinases, extensively purified from rat brain (with apparent molecular mass 640 kDa), rabbit liver (300 kDa) and rabbit skeletal muscle (700 kDa), were analysed for their structural, immunological, and enzymatic properties. The immunological cross-reactivity with affinity-purified polyclonal antibodies to the 50-kDa catalytic subunit of the brain calmodulin-dependent protein kinase confirmed the presence of common antigenic determinants in all subunits of the protein kinases. One-dimensional phosphopeptide patterns, obtained by digestion of the autophosphorylated protein kinases with S. aureus V8 protease, and two-dimensional fingerprints of the 125I-labelled proteins digested with a combination of trypsin and chymotrypsin, revealed a close similarity between the two subunits (51 kDa and 53 kDa) of the liver enzyme. Similar identity was observed between the 56-kDa and/or 58-kDa polypeptides of the skeletal muscle calmodulin-dependent protein kinase. The data suggest that the subunits of the liver and muscle protein kinases may be derived by partial proteolysis or by autophosphorylation. The peptide patterns for the 50-kDa and 60-kDa subunits of the brain enzyme confirmed that the two catalytic subunits represented distinct protein products. The comparison of the phosphopeptide maps and the two-dimensional peptide fingerprints, indicated considerable structural homology among the 50-kDa and 60-kDa subunits of the brain calmodulin-dependent protein kinase and the liver and muscle polypeptides. However, a significant number of unique peptides in the liver 51-kDa subunit, skeletal muscle 56-kDa, and the brain 50-kDa and 60-kDa polypeptides were observed and suggest the existence of isoenzyme forms. All calmodulin-dependent protein kinases rapidly phosphorylated synapsin I with a stoichiometry of 3-5 mol phosphate/mol protein. The two-dimensional separation of phosphopeptides obtained by tryptic/chymotryptic digestion of 32P-labelled synapsin I indicated that the same peptides were phosphorylated by all the calmodulin-dependent protein kinases. Such data represent the first structural and immunological comparison of the liver calmodulin-dependent protein kinase with the enzymes isolated from brain and skeletal muscle. The findings indicate the presence of a family of highly conserved calmodulin-dependent multifunctional protein kinases, with similar structural, immunological and enzymatic properties. The individual catalytic subunits appear to represent the expression of distinct protein products or isoenzymes which are selectively expressed in mammalian tissues.  相似文献   

2.
Existing data on the structure of human deoxycytidine kinase (dCK) diverge. A monomeric 60 kDa form has been isolated and the cloning of a cDNA coding for 626 amino acids corresponding to a 71 kDa protein has been reported. However, pure dCK isolated from leukemic spleen is a dimer of 30 kDa subunits. Amino acid sequences of peptides from digests of this protein are now presented. None of the peptide structures obtained correspond to the cDNA for the 71 kDa protein, but to a cDNA for a 30.5 kDa dCK recently cloned. Furthermore, homology of the peptide sequences of dCK to parts of thymidine kinases and protein-tyrosine kinases are detected.  相似文献   

3.
Three serine kinases which phosphorylate the CTD of RNA polymerase II have been identified in Aspergillus nidulans. The kinases (KI, KII, KIII) were identified using a synthetic peptide containing four copies of the CTD consensus heptamer repeat, and differ in chromatographic behavior, and apparent molecular mass (KI approximately 60kDa; KII approximately 82kDa; KIII approximately 43 kDa). KIII utilized, in addition to peptide, histone H1 as substrate, whereas casein was not phosphorylated by any of the three kinases. The kinases appear to be unrelated to the p34cdc2 kinase, as judged by Western blot analysis and the position of serine phosphorylation of the synthetic CTD peptide. KI was highly purified and renaturation experiments have shown that it consists of a single polypeptide of 57 kDa. KI also phosphorylated RNA polymerase II associated in a preinitiation complex.  相似文献   

4.
Two yeast casein kinase type-1 species of 45 kDa and 27 kDa (CK1) were purified to apparent homogeneity and used for investigation of their immunological affinity. Antisera against the two kinases were isolated; the antibody against the 45 kDa kinase did not react with the 27 kDa enzyme. The 27 kDa casein kinase was recognized only by its own antibody. The obtained data strongly suggest that the low molecular mass CK-1 is not a proteolytic product of the 45 kDa kinase species.  相似文献   

5.
A synthetic peptide modeled after the major threonine (T669) phosphorylation site of the epidermal growth factor (EGF) receptor was an efficient substrate (apparent Km approximately 0.45 mM) for phosphorylation by purified p44mpk, a MAP kinase from sea star oocytes. The peptide was also phosphorylated by a related human MAP kinase, which was identified by immunological criteria as p42mapk. Within 5 min of treatment of human cervical carcinoma A431 cells with EGF or phorbol myristate acetate (PMA), a greater than 3-fold activation of p42mapk was measured. However, Mono Q chromatography of A431 cells extracts afforded the resolution of at least three additional T669 peptide kinases, some of which may be new members of the MAP kinase family. One of these (peak I), which weakly adsorbed to Mono Q, phosphorylated myelin basic protein (MBP) and other MAP kinase substrates, immunoreacted as a 42 kDa protein on Western blots with four different MAP kinase antibodies, and behaved as a approximately 45 kDa protein upon Superose 6 gel filtration. Another T669 peptide kinase (peak IV), which bound more tightly to Mono Q than p42mapk (peak II), exhibited a nearly identical substrate specificity profile to that of p42mapk, but it immunoreacted as a 40 kDa protein only with anti-p44mpk antibody on Western blots, and eluted from Superose 6 in a high molecular mass complex of greater than 400 kDa. By immunological criteria, the T669 peptide kinase in Mono Q peak III was tentatively identified as an active form of p34cdc2 associated with cyclin A. The Mono Q peaks III and IV kinases were modestly stimulated following either EGF or PMA treatments of A431 cells, and they exhibited a greater T669 peptide/MBP ratio than p42mapk. These findings indicated that multiple proline-directed kinases may mediate phosphorylation of the EGF receptor.  相似文献   

6.
Stimulation of tyrosine phosphorylation in lectin treated human lymphocytes   总被引:3,自引:0,他引:3  
Large increases in tyrosine phosphorylation have been detected in subcellular matrixes isolated from lectin treated human lymphocytes. In lectin stimulated cells proteins of molecular weight 105, 75, 58 and 35 kDa contained phosphotyrosine (P-tyr) whereas non-stimulated cells had no 105 and low levels of P-tyr in proteins of 75, 58 and 35 kDa. In stimulated cells increased tyrosine kinase activity was also shown using gastrin as substrate. In both stimulated and non-stimulated cells the 58 kDa phosphoprotein was the most heavily labelled, after partial proteolysis of the 58 kDa different phosphopeptides were generated. A peptide with a sequence analogous to the autophosphorylated tyrosine site of pp60src inhibited tyrosine phosphorylation in stimulated cells. The lymphocyte system provides a useful tool to study normal tyrosine protein kinases and their role in cellular proliferation.  相似文献   

7.
A decapeptide corresponding to residues 35-44(-Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-Val-) of p21ras was synthesized. It was found that peptide causes precipitation of some proteins from the Triton X-100 lysate of NIH 3T3 EJ cells. SDS-PAGE demonstrated the presence of many proteins in this precipitate. The peptide labeled with [125I]Bolton-Hunter reagent specifically recognized four proteins of M. W. 27, 35, 50 and 85 kDa. The order of charged amino acid residues in the fragment 35-44 of p21ras is "complementary" to that of the substrate sequence of tyrosine-specific protein kinases (-Arg-X-X-Glu-Asp-X-X-Tyr-). It is suggested that p21ras proteins directly regulate phosphorylation of the target proteins of these kinases. A model for functioning of p21ras proteins predicts the presence in their structure of certain sites homologous to sequences recognizable by tyrosine-specific kinases. Indeed two such sites are present in the sequences of all p21ras proteins, namely the residues 88-92 and 104-108.  相似文献   

8.
The dynamics of protein kinases activity in nuclear and cytoplasmic fractions of human fibroblasts treated by preparations of natural and synthetic dsRNA (ridostin, rifastin, larifan and poly(I).poly(C), DEAE-dextran and dsRNA complexes with DEAE-dextran), as well as by preparations of recombinant alpha-2 and beta-1 interferons was obtained. The early activation of enzymes in treated cells extracts and their presence in dsRNA-activated and nonactivated forms were found. In cytoplasmic cellular fractions treated by interferons the dsRNA dependent protein kinases (nonactivated forms- were prevalent.r In contrast, in dsRNA treated cells or dsRNA complexes with DEAE-dextran treated ones the dsRNA independent protein kinases (activated forms) were found, while dsRNA dependent forms induced by interferons were found at later periods. Nuclear protein kinases are mainly dsRNA independent making possible the supposition of their intracellular activation by incoming dsRNA or interferon-induced formation of ds-structures in cellular nuclei. In phosphorylated proteins spectre the 90, 69, 45-40 and 30-35 kDa polypeptides were found. At early intervals in nuclear fractions was found a nuclease resistant and partially EDTA resistant high molecular phosphorylated complex (120 kDa). The complex is, probably, capable of dissociation to low mol mass components. DEAE-dextran induces strong activation of protein kinases in cytoplasm and nuclei and increases the content of activated forms of enzyme in larifan treated cells.  相似文献   

9.
Ha-AP10 is a basic antifungal peptide from sunflower seeds (Helianthus annuus antifungal peptide of 10 kDa) belonging to the family of plant lipid transfer proteins. We report here its expression in E. coli [Glutathione S-transferase (GST) system] and its phosphorylation by endogenous membrane-bound calcium-dependent protein kinases.  相似文献   

10.
11.
Previously, we characterized a 140-kDa protein from Entamoeba histolytica as a beta1-integrin-like molecule that binds fibronectin. In this work we present data showing that the amoebic receptor is associated with another surface molecule, the 220-kDa lectin, and with protein tyrosine kinase activity. By immunoprecipitation with the alphabeta1Eh antibody, we demonstrated by immune complex assays for tyrosine protein kinases that the amoebic fibronectin receptor was associated with two phosphorylated proteins of 50 and 70 kDa when internal membranes were used as the source of antigen. When cells were stimulated with fibronectin, two proteins of 55 and 90 kDa were tyrosine phosphorylated, as shown by Western blot with alphaPY20, its phosphorylation being time dependent after fibronectin stimulation. However, when the actin cytoskeleton of fibronectin-stimulated trophozoites was stabilized with phalloidin, the level and the pattern of phosphorylated proteins were different. In this case, a high-molecular-weight component, heavily phosphorylated, was present, which may include the 220-kDa lectin. We also present data confirming that the signaling pathway that is activated by fibronectin is specific. This was demonstrated by comparing the pattern of phosphoproteins obtained in immune complexes prepared with alphabeta1Eh, alphaL220, and alphaPY20 from total extracts obtained in the presence of phalloidin, from cells that had been exposed to fibronectin, soluble concanavalin A, or concanavalin-A-coated substrate. The presence of tyrosine kinases associated with the beta1-integrin-like amoebic molecule was confirmed by immunoprecipitation assays along with the combined use of a tyrosine kinase-specific substrate, the peptide RR-SRC, and a tyrosine kinase inhibitor, genistein.  相似文献   

12.
Two forms of protein kinase activity were isolated from crude extracts of Streptococcus pyogenes and partially purified by ion exchange chromatography and affinity chromatography. The phosphorylation activities were shown to be insensitive to cAMP, required the presence of divalent cations, and eluted from a Sephadex G-200 column with approximate molecular masses of 60 and 45 kDa, respectively. Both enzymes were capable of phosphorylating eukaryotic proteins and synthetic polypeptides in addition to endogenous and heterologous prokaryotic proteins at serine and tyrosine residues. Firm evidence for tyrosine kinase activity was obtained by the use of a tyrosine kinase-specific substrate, a 4:1 glutamate:tyrosine copolymer. Both protein kinases phosphorylated HPr, a phosphocarrier protein of the phosphotransferase system isolated from S. pyogenes and Bacillus stearothermophilus, but failed to phosphorylate HPr isolated from Escherichia coli. Both also phosphorylated a native polypeptide fragment (pep M24) as well as synthetic peptide copies of M protein, the major virulence determinant of group A streptococci. These results indicate that prokaryotic protein kinases are capable of phosphorylating eukaryotic proteins and suggest that the protein kinases of streptococci may play an important role not only in the phosphotransferase system but also in the virulence properties of these organisms.  相似文献   

13.
Rat liver glycogen synthase was purified to homogeneity by an improved procedure that yielded enzyme almost exclusively as a polypeptide of Mr 85,000. The phosphorylation of this enzyme by eight protein kinases was analyzed by cleavage of the enzyme subunit followed by mapping of the phosphopeptides using polyacrylamide gel electrophoresis in the presence of SDS, reverse-phase high-performance liquid chromatography and thin-layer electrophoresis. Cyclic AMP-dependent protein kinase, phosphorylase kinase, protein kinase C and the calmodulin-dependent protein kinase all phosphorylated the same small peptide (approx. 20 amino acids) located in a 14 kDa CNBr-fragment (CB-1). Calmodulin-dependent protein kinase and protein kinase C also modified second sites in CB-1. A larger CNBr-fragment (CB-2) of approx. 28 kDa was the dominant site of action for casein kinases I and II, FA/GSK-3 and the heparin-activated protein kinase. The sites modified were all localized in a 14 kDa species generated by trypsin digestion. Further proteolysis with V8 proteinase indicated that FA/GSK-3 and the heparin-activated enzyme recognized the same smaller peptide within CB-2, which may also be phosphorylated by casein kinase 1. Casein kinase 1 also modified a distinct peptide, as did casein kinase II. The results lead us to suggest homology to the muscle enzyme with regard to CB-1 phosphorylation and the region recognized by FA/GSK-3, which in rabbit muscle is characterized by a high density of proline and serine residues. A striking difference with the muscle isozyme is the apparent lack of phosphorylations corresponding to the muscle sites 1a and 1b. These results provide further evidence for the presence of liver- and muscle-specific glycogen synthase isozymes in the rat. That the isozymes differ subtly as to phosphorylation sites may provide a clue to the functional differences between the isozymes.  相似文献   

14.
The extrinsic 12 kDa protein in red algal photosystem II (PSII) functions to minimize the chloride and calcium requirement of oxygen-evolving activity [Enami et al. (1998) Biochemistry 37: 2787]. In order to identify functional domains of the 12 kDa protein, we prepared the 12 kDa protein lacking N-terminal peptides or C-terminal peptides or both by limited proteolysis and directed mutagenesis. The resulting 12 kDa protein fragments were examined for their binding and functional properties by reconstitution experiments. (1) A peptide fragment from Gly-6 to C-terminus of the 12 kDa protein was prepared by V8 protease. This fragment rebound to PSII completely, and it reactivated oxygen evolution partially in the absence of Cl(-) and Ca(2+) ions but significantly in the presence of Cl(-) ion. (2) A peptide from Leu-10 to Phe-83 was obtained by chymotrypsin treatment. This peptide rebound to PSII effectively, but the rebinding did not restore oxygen evolution in both the absence and presence of Cl(-) and Ca(2+) ions. (3) Two mutant proteins, one lacking five residues and the other lacking nine residues of the N-terminus, were able to bind to PSII effectively. Recovery of oxygen evolution by their binding was almost the same as that reconstituted with the V8 protease-treated peptide. (4) Three mutant proteins lacking ten, seven or three residues of the C-terminus effectively rebound to PSII, but their binding did not result in recovery of the oxygen evolution. In contrast, reconstitution with a mutant protein lacking one residue of the C-terminus showed the same high restoration of oxygen evolution as reconstitution with the full-length 12 kDa protein. (5) These results indicate that two residues from lysine of the C-terminus of the 12 kDa protein constitute an important domain for minimizing the chloride and calcium requirement of oxygen evolution. In addition, the N-terminus of the protein, at least five residues, has a secondary function for the chloride requirement.  相似文献   

15.
Summary Ectoderm explants from early gastrula stages of Xenopus laevis were induced with a neutralizing factor. The factor was isolated from Xenopus gastrulae and partially purified by chromatography on DEAE cellulose. The ectoderm was cultured for different periods of time and then homogenized. Protein kinase activity was determined in the homogenates from induced and control explants with histone H 1 or C-terminal peptide derived from histone H 1 as substrates. The C-terminal peptide is a more specific substrate for protein kinase C, whereas histoneH 1 is a substrate for cAMP/cGMP-dependent protein kinases as well protein kinase C. With both substrates the enzyme activity increases after induction. With the C-terminal peptide as the substrate the protein kinase activity is lower, but its relative increase after induction higher. This suggests that besides cAMP/cGMP dependent protein kinases protein kinase C or related enzymes are involved in the neural induction and differentiation processes. This corresponds to previous experiments which have shown that treatment of ectoderm with phorbol myristate acetate, an activator of protein kinase C and protein kinase C related enzymes, initiates neural differentiation. Endogeneous substrates, which are more intensively phosphorylated after induction are proteins with apparent molecular weights 21 kDa and 31 kDa. Addition of protein kinase C to the induced and control homogenates abolishes the difference in the phosphorylation rate of these proteins.  相似文献   

16.
D A Stetler  S T Jacob 《Biochemistry》1985,24(19):5163-5169
Poly(A) polymerases were purified from the cytosol fraction of rat liver and Morris hepatoma 3924A and compared to previously purified nuclear poly(A) polymerases. Chromatographic fractionation of the hepatoma cytosol on a DEAE-Sephadex column yielded approximately 5 times as much poly(A) polymerase as was obtained from fractionation of the liver cytosol. Hepatoma cytosol contained a single poly(A) polymerase species [48 kilodaltons (kDa)] which was indistinguishable from the hepatoma nuclear enzyme (48 kDa) on the basis of CNBr cleavage maps. Liver cytosol contained two poly(A) polymerase species (40 and 48 kDa). The CNBr cleavage patterns of these two enzymes were distinct from each other. However, the cleavage pattern of the 40-kDa enzyme was similar to that of the major liver nuclear poly(A) polymerase (36 kDa), and approximately three-fourths of the peptide fragments derived from the 48-kDa species were identical with those from the hepatoma enzymes (48 kDa). NI-type protein kinases from liver or hepatoma stimulated hepatoma nuclear and cytosolic poly(A) polymerases 4-6-fold. In contrast, the liver cytosolic 40- and 48-kDa poly(A) polymerases were stimulated only slightly or inhibited by similar units of the protein kinases. Antibodies produced in rabbits against purified hepatoma nuclear poly(A) polymerase reacted equally well with hepatoma nuclear and cytosolic enzyme but only 80% as well with the liver cytosolic 48-kDa poly(A) polymerase and not at all with liver cytosolic 40-kDa or nuclear 36-kDa enzymes. Anti-poly(A) polymerase antibodies present in the serum of a hepatoma-bearing rat reacted with hepatoma nuclear and cytosolic poly(A) polymerases to the same extent but only 40% as well with the liver cytosolic 48-kDa enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The egg plasma membrane and cortical structures are highly enriched in protein tyrosine kinase activity which is thought to play an important role in the fertilization process. In order to identify the tyrosine protein kinases in the egg cortex, a site directed polyclonal antibody was produced against a peptide duplicating a conserved region of the catalytic domain of the sea urchin c-abl gene product. The region chosen as an antigen had a high degree of homology (57%) to other protein tyrosine kinases. The antibody was found to bind with a high degree of specificity to a 57 kDa protein tyrosine kinase in S. purpuratus eggs. The antibody was capable of immunoprecipitating the enzyme as a 57 kDa phosphoprotein from purified egg cortex fractions solubilized in NP-40. Immunoprecipitation was completely inhibited by prior incubation of the antibody with the synthetic peptide used as an antigen. Binding of the antibody completely inhibited kinase activity. However, the immunoprecipitated kinase activity could be eluted from the Sepharose-coupled antibody and was shown to have catalytic activity towards a tyrosine containing peptide substrate. The enzyme also underwent autophosphorylation on tyrosine in vitro. Ultrastructural localization of the kinase by immuno-electron microscopy revealed that the enzyme was primarily restricted to the egg plasma membrane.  相似文献   

18.
Enzymatic properties and the protein pattern of sarcolemma fractions isolated from three groups of rabbits: euthyroid, hyperthyroid and hypothyroid, were studied. The amount of phosphorylated intermediate formed by the calmodulin-dependent (Ca2+-Mg2+)ATPase and the activity of this enzyme as well as that of (Na+-K+)ATPase were the highest in membranes isolated at the hyperthyroid state. On the other hand, sarcolemma obtained from the hypothyroid animals exhibited a decreased activity of (Na+-K+)ATPase, while the activity of calmodulin-dependent (Ca2+-Mg2+)ATPase was the same as in the preparations obtained from euthyroid animals. Thyroid hormones also changed the protein pattern of muscle sarcolemma. Membranes isolated from hyperthyroid animals lacked peptides of apparent molecular masses of 41 kDa and 53 kDa, while a peptide of the apparent molecular mass of 63 kDa was enriched in the preparation from hypothyroid animals. Thyroid hormones affected endogenous cAMP-dependent protein phosphorylation. The sarcolemma fraction obtained from hyperthyroid animals exhibited a decreased phosphorylation of peptides of apparent molecular masses of 30 kDa and 47 kDa, while the cAMP-independent phosphorylation of several other peptides was augmented. Moreover, sarcolemma preparations isolated from hyperthyroid animals showed higher activity of cAMP-independent protein kinase(s) and lower activity of cAMP-dependent protein kinase when compared to the euthyroid preparations. It is proposed that thyroxine increases the content of calmodulin-dependent (Ca2+-Mg2+)ATPase protein and affects the activity of cAMP-independent and cAMP-dependent protein kinases bound to sarcolemma.  相似文献   

19.
Animal peptide antibiotics are thought to mediate their cytotoxic and growth inhibitory action on bacteria, fungi, and cancer cells through a membrane-targeted mechanism. Although the membrane interactions of the peptide antibiotics and their penetration through the membranes have been studied in several models, the precise chain of events leading to cell death or growth arrest is not established yet. In this study we used in vitro kinase assays followed by imaging analyses to examine the effect of human cationic antimicrobial peptide ECAP on the activity of the protein kinases. We report that HPLC-grade ECAP is responsible for inhibition of EGFR autophosphorylation in plasma membrane fractions obtained from A-431 cells. The activity of ECAP is concentration dependent with a half-inhibitory concentration in the range of 0.1-0.2 microM. Marked decrease in autophosphorylation of immunoprecipitated non-receptor protein kinases belonging to different families, namely PKCmu, Lyn and Syk, is observed in the presence of as little as 0.2 microM of the peptide. Among the examined non-receptor protein kinases PKCmu was the most sensitive to the inhibitory action of ECAP, whereas Syk was inhibited least of all. ECAP exerted no detectable cytotoxicity on non-nucleate animal cells at concentrations up to 3 microM. The capability of ECAP to inhibit protein kinases at concentrations, that are at least 10 fold lower than antibacterial and cytotoxic ones, suggests that the protein kinases are possible intracellular targets for antimicrobial peptides. We suppose that inhibition of the protein kinases may provide a mechanism for the action of cationic antimicrobial peptides on host cells including tumour cells.  相似文献   

20.
Although multifunctional Ca2+/calmodulin-dependent protein kinases (CaM-kinases) are widely distributed in animal cells, the occurrence of CaM-kinases in the basidiomycetous mushroom has not previously been documented. When the extracts from various developmental stages from mycelia to the mature fruiting body of Coprinus cinereus were analyzed by Western blotting using Multi-PK antibodies, which had been generated to detect a wide variety of protein serine/threonine kinases (Ser/Thr kinases), a variety of stage-specific Ser/Thr kinases was detected. Calmodulin (CaM) overlay assay using digoxigenin-labeled CaM detected protein bands of 65 kDa, 58 kDa, 46 kDa, 42 kDa, and 38 kDa only in the presence of CaCl2, suggesting that these bands were CaM-binding proteins. When the CaM-binding fraction was prepared from mycelial extract of C. cinereus by CaM-Sepharose and analyzed with Multi-PK antibodies, two major immunoreactive bands corresponding to 65 kDa and 46 kDa were detected. CaM-binding fraction, thus obtained, exhibited Ca2+/CaM-dependent protein kinase activity toward protein substrates such as histones. These CaM-kinases were found to be highly expressed in the actively growing mycelia, but not in the resting mycelial cells. Mycelial growth was enhanced by the addition of CaCl2 in the culture media, but inhibited by the addition of EGTA or trifluoperazine, a potent CaM inhibitor. This suggested that CaM-dependent enzymes including CaM-kinases play crucial roles in mycelial growth of basidiomycete C. cinereus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号