首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Recent molecular studies in the genera Aegilops and Triticum showed that allopolyploidization (interspecific or intergeneric hybridization followed by chromosome doubling) generated rapid elimination of low-copy or high-copy, non-coding and coding DNA sequences. The aims of this work were to determine the amount of nuclear DNA in allopolyploid species of the group and to see to what extent elimination of DNA sequences affected genome size. Nuclear DNA amount was determined by the flow cytometry method in 27 natural allopolyploid species (most of which were represented by several lines and each line by several plants) as well as 14 newly synthesized allopolyploids (each represented by several plants) and their parental plants. Very small intraspecific variation in DNA amount was found between lines of allopolyploid species collected from different habitats or between wild and domesticated forms of allopolyploid wheat. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various allopolyploid species, at both the tetraploid and hexaploid levels. In most allopolyploids nuclear DNA amount was significantly less than the sum of DNA amounts of the parental species. Newly synthesized allopolyploids exhibited a similar decrease in nuclear DNA amount in the first generation, indicating that genome downsizing occurs during and (or) immediately after the formation of the allopolyploids and that there are no further changes in genome size during the life of the allopolyploids. Phylogenetic considerations of the origin of the B genome of allopolyploid wheat, based on nuclear DNA amount, are discussed.  相似文献   

2.
3.
By the example of three synthetic allopolyploids: Aegilops sharonensis x Ae. umbellulata (2n =28), Triticum urartu x Ae. tauschii (2n =28), T. dicoccoides x Ae. tauschii (2n =42) the 5S rDNA changes at the early stage of allopolyploidization were investigated. Using fluorescent in situ hybridization (FISH), the quantitative changes affecting the separate loci of one of the parental genomes were revealed in plants of S3 generation of each hybrid combination. Souther hybridization with genomic DNA of allopolyploid T. urartu x Ae. tauschii (TMU38 x TQ27) revealed lower intensity of the fragments from Ae. tauschii compared with the T. urartu fragments. It may be confirmation of the reduction of signal on 1D chromosome that was revealed in this hybrid using FISH. Both appearance of a new 5S rDNA fragments and full disappearance of fragments from parental species were not showed by Southern hybridization, as well as PCR-analysis of 5-15 plants of S2-S3 generations. The changes were not found under comparison of primary structure of nine 5S rDNA sequences of allopolyploid TMU38 x TQ27 with analogous sequences from parental species genomes. The observable similarity by FISH results of one of the studied synthetic allopolyploids with natural allopolyploid of similar genome composition indicates the early formation of unique for each allopolyploid 5S rDNA organization.  相似文献   

4.
The synthetic allotetraploid Aegilops sharonensis x Ae. umbellulata (genomic formula S(sh)U) was used to study inheritance and expression of 45S rDNA during early stages of allopolyploid formation. Using silver staining, we revealed suppression of the NORs (nucleolar organizing regions) from the S(sh) genome in response to polyploidization. Most allopolyploid plants of the S(2)-S(4) generations retained the chromosomal location of 45S rDNA typical for the parental species, except for two S(3) plants in which a deletion of the rDNA locus on one of the homologous 6S(sh) chromosomes was revealed. In addition, we found a decrease in NOR signal intensity on both 6S(sh) chromosomes in a portion of the S(3) and S(4) allopolyploid plants. As Southern hybridization showed, the allopolyploid plants demonstrated additive inheritance of parental rDNA units together with contraction of copy number of some rDNA families inherited from Ae. sharonensis. Also, we identified a new variant of amplified rDNA unit with MspAI1 restriction sites characteristic of Ae. umbellulata. These genetic alterations in the allopolyploid were associated with comparative hypomethylation of the promoter region within the Ae. umbellulata-derived rDNA units. The fast uniparental elimination of rDNA observed in the synthetic allopolyploid agrees well with patterns observed previously in natural wheat allotetraploids.  相似文献   

5.
M. Feldman  B. Liu  G. Segal  S. Abbo  A. A. Levy    J. M. Vega 《Genetics》1997,147(3):1381-1387
To study genome evolution in allopolyploid plants, we analyzed polyploid wheats and their diploid progenitors for the occurrence of 16 low-copy chromosome- or genome-specific sequences isolated from hexaploid wheat. Based on their occurrence in the diploid species, we classified the sequences into two groups: group I, found in only one of the three diploid progenitors of hexaploid wheat, and group II, found in all three diploid progenitors. The absence of group II sequences from one genome of tetraploid wheat and from two genomes of hexaploid wheat indicates their specific elimination from these genomes at the polyploid level. Analysis of a newly synthesized amphiploid, having a genomic constitution analogous to that of hexaploid wheat, revealed a pattern of sequence elimination similar to the one found in hexaploid wheat. Apparently, speciation through allopolyploidy is accompanied by a rapid, nonrandom elimination of specific, low-copy, probably noncoding DNA sequences at the early stages of allopolyploidization, resulting in further divergence of homoeologous chromosomes (partially homologous chromosomes of different genomes carrying the same order of gene loci). We suggest that such genomic changes may provide the physical basis for the diploid-like meiotic behavior of polyploid wheat.  相似文献   

6.
F P Han  G Fedak  T Ouellet  B Liu 《Génome》2003,46(4):716-723
Allopolyploidy is preponderant in plants, which often leads to speciation. Some recent studies indicate that the process of wide hybridization and (or) genome doubling may induce rapid and extensive genetic and epigenetic changes in some plant species and genomic stasis in others. To further study this phenomenon, we analyzed three sets of synthetic allopolyploids in the Triticeae by restriction fragment length polymorphism (RFLP) using a set of expressed sequence tags (ESTs) and retrotransposons as probes. It was found that 40-64.7% of the ESTs detected genomic changes in the three sets of allopolyploids. Changes included disappearance of parental hybridization fragment(s), simultaneous appearance of novel fragment(s) and loss of parental fragment(s), and appearance of novel fragment(s). Some of the changes occurred as early as in the F1 hybrid, whereas others occurred only after allopolyploid formation. Probing with retrotransposons revealed numerous examples of disappearance of sequences. No gross chromosome structural changes or physical elimination of sequences were found. It is suggested that DNA methylation and localized recombination at the DNA level were probably the main causes for the genomic changes. Possible implications of the genomic changes for allopolyploid genome evolution are discussed.  相似文献   

7.
Allopolyploidy--a shaping force in the evolution of wheat genomes   总被引:2,自引:0,他引:2  
  相似文献   

8.
9.
DNA methylation is an epigenetic mechanism with the potential to regulate gene expression and affect plant phenotypes. Both hybridization and genome doubling may affect the DNA methylation status of newly formed allopolyploid plants. Previous studies demonstrated that changes in cytosine methylation levels and patterns were different among individual hybrid plant, therefore, studies investigating the characteristics of variation in cytosine methylation status must be conducted at the population level to avoid sampling error. In the present study, an F1 hybrid diploid population and three allotriploid populations with different heterozygosity [originating from first-division restitution (FDR), second-division restitution (SDR), and post-meiotic restitution (PMR) 2n eggs of the same female parent] were used to investigate cytosine methylation inheritance and variation relative to their common parents using methylation-sensitive amplification polymorphism (MSAP). The variation in cytosine methylation in individuals in each population exhibited substantial differences, confirming the necessity of population epigenetics. The total methylation levels of the diploid population were significantly higher than in the parents, but those of the three allotriploid populations were significantly lower than in the parents, indicating that both hybridization and polyploidization contributed to cytosine methylation variation. The vast majority of methylated status could be inherited from the parents, and the average percentages of non-additive variation were 6.29, 3.27, 5.49 and 5.07% in the diploid, FDR, SDR and PMR progeny populations, respectively. This study lays a foundation for further research on population epigenetics in allopolyploids.  相似文献   

10.
11.
研究表明 ,多倍体小麦基因组中存在一类低拷贝、染色体专化的DNA序列 ,其在多倍体形成时常表现出不稳定性。这类序列被认为在异源多倍体的建立和稳定中起着关键作用。为进一步研究这一问题 ,对通过染色体显微切割从普通小麦 (TriticumaestivumL .)中分离的 5个 7B染色体专化DNA序列的特性进行了研究。以这些序列为探针对大量的多倍体小麦和它们的二倍体祖先物种进行了Southern杂交分析。结果表明 ,这些序列可被分为两种类型 :其中的 4个序列与所有的多倍体物种均杂交 ,但是在二倍体水平上 ,它们却只与和多倍体小麦B基因组紧密相关的物种杂交 ,这说明这些序列是在二倍体物种分化以后产生的 ,然后垂直传递给多倍体 ;其中的 1个序列与所有的二倍体及多倍体物种均杂交 ,暗示在多倍体形成后这些序列从A和D基因组中消除了。用这一序列分别与一个人工合成的六倍体和四倍体小麦进行Southern杂交的结果表明 ,序列消除是一个迅速的事件而且很可能与这些序列的甲基化状态有关。认为这些低拷贝的染色体专化序列对于多倍体形成后部分同源染色体之间的进一步分化起着重要作用。  相似文献   

12.
The merger of two or more divergent genomes within an allopolyploid nucleus can facilitate speciation and adaptive evolution in flowering plants. Widespread changes to gene expression have been shown to result from interspecific hybridisation and polyploidy in a number of plant species, and attention has now shifted to determining the epigenetic processes that drive these changes. We present here an analysis of cytosine methylation patterns in triploid F(1) Senecio (ragwort) hybrids and their allohexaploid derivatives. We observe that, in common with similar studies in Arabidopsis, Spartina and Triticum, a small but significant proportion of loci display nonadditive methylation in the hybrids, largely resulting from interspecific hybridisation. Despite this, genome duplication results in a secondary effect on methylation, with reversion to additivity at some loci and novel methylation status at others. We also observe differences in methylation state between different allopolyploid generations, predominantly in cases of additive methylation with regard to which parental methylation state is dominant. These changes to methylation state in both F(1) triploids and their allohexaploid derivatives largely mirror the overall patterns of nonadditive gene expression observed in our previous microarray analyses and may play a causative role in generating those expression changes. These similar global changes to DNA methylation resulting from hybridisation and genome duplication may serve as a source of epigenetic variation in natural populations, facilitating adaptive evolution. Our observations that methylation state can also vary between different generations of polyploid hybrids suggests that newly formed allopolyploid species may display a high degree of epigenetic diversity upon which natural selection can act.  相似文献   

13.
Isolation, physical mapping and polymorphism of chromosome-specific DNA sequences in wheat are reported. Following the microdissection of the long arm of chromosome 5B (5BL) of common wheat, its DNA was amplified by degenerate oligonucleotide-primed PCR and directly cloned into plasmid vectors. Characterization of the chromosome arm library showed that ∼55% of the inserts are of low-copy nature. Southern analysis using aneuploid lines of common wheat revealed that five of 11 low-copy inserts analyzed map to chromosome arm 5BL; four of these are 5BL-specific. By deletion mapping, the 5BL-specific sequences were located to sub- chromosome arm regions. Based on the hybridization patterns of three 5BL-specific sequences to DNA from a diverse collection of goat-grass ( Aegilops ) and wheat ( Triticum ) species, it was concluded that these sequences emerged at different times in the course of evolution of this group of plant species.  相似文献   

14.
Genomic change and gene silencing in polyploids   总被引:10,自引:0,他引:10  
Combining the genomes of two species through hybridization and chromosome doubling can create a new allopolyploid species virtually overnight. Although common in Nature, such genetic mergers might not be easy. Recent studies, mostly in plants, suggest that polyploidization can induce a flurry of genetic and epigenetic events that include DNA sequence elimination and gene silencing.  相似文献   

15.
Polyploidization, often accompanied by hybridization, has been of major importance in flowering plant evolution. Here we investigate the importance of these processes for the evolution of the tetraploid crucifer Capsella bursa-pastoris using DNA sequences from two chloroplast loci as well as from three nuclear low-copy genes. The near-absence of variation at the C. bursa-pastoris chloroplast markers suggests a single and recent origin of the tetraploid. However, despite supporting a single phylogeny, chloroplast data indicate that neither of the extant Capsella diploids is the maternal parent of the tetraploid. Combined with data from the three nuclear loci, our results do not lend support to previous hypotheses on the origin of C. bursa-pastoris as an allopolyploid between the diploids C. grandiflora and C. rubella or an autopolyploid of C. grandiflora. Nevertheless, for each locus, some of the C. bursa-pastoris accessions harbored C. rubella alleles, indicating that C. rubella contributed to the gene pool of C. bursa-pastoris, either through allopolyploid speciation or, more likely, through hybridization and introgression. To our knowledge, this study is the first of a wild, nonmodel plant genus that uses a combination of chloroplast and multiple low-copy nuclear loci for phylogenetic inference of polyploid evolution.  相似文献   

16.
Han F  Fedak G  Guo W  Liu B 《Genetics》2005,170(3):1239-1245
Recent work in the Triticum-Aegilops complex demonstrates that allopolyploidization is associated with an array of changes in low-copy coding and noncoding sequences. Nevertheless, the behavior and fate of repetitive DNA elements that constitute the bulk of nuclear DNA of these plant species is less clear following allopolyploidy. To gain further insight into the genomic events that accompany allopolyploid formation, we investigated fluorescence in situ hybridization (FISH) patterns of a parental-specific, tandem DNA repeat (pGc1R-1) on three sets of newly synthesized amphiploids with different parental species. It was found that drastic physical elimination of pGc1R-1 copies occurred in all three amphiploids in early generations. DNA gel-blot analysis confirmed the FISH data and estimates indicated that approximately 70-90% of the copies of the pGc1R-1 repeat family were eliminated from the amphiploids by the second to third selfed generations. Thus, allopolyploidy in Triticum-Aegilops can be accompanied by rapid and extensive elimination of parental-specific repetitive DNA sequences, which presumably play a role in the initial stabilization of the nascent amphiploid plants.  相似文献   

17.
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next‐generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome‐wide fluorescent in situ hybridization complemented with immunostaining and super‐resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44–52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.  相似文献   

18.
Interspecific or intergeneric hybridization, followed by chromosome doubling, can lead to the formation of new allopolyploid species. Recent studies indicate that allopolyploid formation is associated with genetic and epigenetic changes. Despite these studies, it is not yet clear whether the C value of an allopolyploid is the sum of its diploid parents. To address this question, six newly synthesized wheat allopolyploids and their parental plants were investigated. It was found that allopolyploids have a genome size significantly smaller than the expected value. The reduction of the nuclear genome size in the synthetic allotetraploids and allohexaploids was 2 pg DNA at 2C. It was also found that changes in the genome size already existed in the first generation amphiploids, indicating that the change was a rapid event. There was no difference in the reduction of nuclear genome size between the allotetraploid and the allohexaploid. These data clearly show that genome differentiation in allopolyploids was not related to the ploidy level. The data obtained clearly suggested that the nonadditive change in genome size that occurred during allopolyploidization may represent a preprogrammed adaptive response to genomic stress caused by hybridization and allopolyploidy, which serves to stabilize polyploid genomes.  相似文献   

19.
An accurate physical map of the location of the 5S and the 18S-5.8S-25S rRNA genes and a repetitive DNA sequence has been produced on Aegilops umbellulata Zhuk., (2n = 2x = 14) chromosomes by in situ hybridization. Chromosome morphology together with the hybridization pattern of pSc119.2, a DNA sequence from rye, allowed identification and discrimination of different chromosomes; pSc119.2 hybridizes with all Ae. umbellulata chromosomes at the telomeres, except for the short arm of chromosome 6U, and shows intercalary sites on the long arms of chromosomes 6U and 7U. The 5S and 18S-25S rDNA have been mapped physically only on the short arms of chromosomes 1U and 5U. On chromosome 1U the order of the genes is 5S rDNA subterminal and 18S-25S rDNA more proximal, while on chromosome 5U the position of the genes is reversed. The relative order of the genes, together with the hybridization pattern of the pSc119.2, is useful in identifying whole chromosomes or chromosome segments from Ae. umbellulata in recombinant or addition lines with wheat. The data help link the physical organization of chromosomes to the genetic map. Other members of the Triticeae vary in the presence and order of the 5S and 18S-25S rDNA sequences on groups 1 and 5, indicating multiple and complex evolutionary rearrangements of the chromosome arms.  相似文献   

20.
The timing and rate of genomic variation induced by allopolyploidization in the intergeneric wheat-rye (Triticum spp. - Secale cereale L.) hybrid triticale (x Triticosecale Wittmack) was studied using amplified fragment length polymorphism (AFLP) analyses with 2 sets of primers, EcoRI-MseI (E-M) and PstI-MseI (P-M), which primarily amplify repetitive and low-copy sequences, respectively. The results showed that allopolyploidization induced genome sequence variation in triticale and that a great degree of the genome variation occurred immediately following wide hybridization. Specifically, about 46.3% and 36.2% of the wheat parental band loss and 74.5% and 68.4% of the rye parental band loss occurred in the F1 hybrids (before chromosome doubling) for E-M and P-M primers, respectively. The sequence variation events that followed chromosome doubling consisted of continuous modifications that occurred at a very small rate compared with the rate of variation before chromosome doubling. However, the rate of sequence variation involving the rye parental genome was much higher in the first 5 generations following chromosome doubling than in any subsequent generation. Surprisingly, the highest rate of rye genomic variation occurring after chromosome doubling was in C3 or later, but not in C1. The data suggested that the cytoplasm and the degree of the relationship between the parental genomes were the key factors in determining the direction, amount, timing, and rate of genomic sequence variation occurring during intergeneric allopolyploidization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号