首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly repetitive centromeric Fringilla coelebs PstI (FCP) element was cloned and sequenced. The FCP tandem repeats with a unit length 505 or 506 accounted for about 0.9% of the entire genome and had 57% GC. Direct genomic sequencing with FCP-specific primers and ThermoFidelase 2A revealed the consensus sequence and the five most common single-nucleotide polymorphisms (SNPs) for the FCP unit. FCP may be transcribed and may play a role in the spatial arrangement of the genome.  相似文献   

2.
A new family of avian centromeric satellites is described. The highly repeated sequence, designated FCP (Fringilla coelebs PstI element), was cloned from the 500-bp PstI digest fraction of the chaffinch (Fringilla coelebs L.) genomic DNA, sequenced, and characterized. The FCP repeat was found to have 505-506 bp length of monomer, 57% content of GC, to compose about 0.9% of the chaffinch genome, and to be highly methylated. Results of Southern-blot hybridization of cloned FCP element onto genomic DNA digested with different restriction enzymes, and sequencing directly from total genomic DNA using FCP-specific primers and ThermoFidelase enzyme (Fidelity Systems Inc.) were in agreement with a tandem arrangement of this repeat in the chaffinch genome. Five positions of single-nucleotide polymorphism (SNP) were found in the FCP monomers using direct genomic sequencing. Fluorescence in situ hybridization (FISH) with FCP probe and primed in situ labelling (PRINS) with FCP specific primers showed that the FCP elements occupy pericentric regions of all chaffinch chromosomes. On chromosome spreads, the fluorescent signals were also observed in the intercentromeric connectives between nonhomologous chromosomes. The results suggest that the centromeric FCP repeat is responsible for chromosome ordering during mitosis in chaffinch.  相似文献   

3.
A highly repeated FCP (Fringilla coelebs PstI element) sequence was localized by FISH in centromeric regions of all chromosomes of the chaffinch. Besides, FISH signal was found also in interchromosomal connectives linking centromeres of non-homologous chromosomes in mitotic cells. The presence of DNA in the connectives was confirmed by immunostaining with anti-dsDNA antibodies as well as in experiments on nick-translation and random primed labeling in situ. Non-denaturing FISH with FCP probe and random primed labeling of non-denatured chromosomes resulted in fluorescence signal on both centromeres and intercentromeric connectives, thus providing evidence for the availability of single-strand DNA tracts in FCP sequence. It is suggested that the highly repeated FCP centromeric sequence may be respondible for interconnection of mitotic chromosomes and may by involved in nuclear architecture maintenance in the chaffinch.  相似文献   

4.
Bacterial genomes encode an extensive range of respiratory enzymes that enable respiratory metabolism with a diverse group of reducing and oxidizing substrates under both aerobic and anaerobic growth conditions. An important class of enzymes that contributes to this broad diversity is the complex iron-sulfur molybdoenzyme (CISM) family. The architecture of this class comprises the following subunits. (i) A molybdo-bis(pyranopterin guanine dinucleotide) (Mo-bisPGD) cofactor-containing catalytic subunit that also contains a cubane [Fe-S] cluster (FS0). (ii) A four-cluster protein (FCP) subunit that contains 4 cubane [Fe-S] clusters (FS1-FS4). (iii) A membrane anchor protein (MAP) subunit which anchors the catalytic and FCP subunits to the cytoplasmic membrane. In this review, we define the CISM family of enzymes on the basis of emerging structural and bioinformatic data, and show that the catalytic and FCP subunit architectures appear in a wide range of bacterial redox enzymes. We evaluate evolutionary events involving genes encoding the CISM catalytic subunit that resulted in the emergence of the complex I (NADH:ubiquinone oxidoreductase) Nqo3/NuoG subunit architecture. We also trace a series of evolutionary events leading from a primordial Cys-containing peptide to the FCP architecture. Finally, many of the CISM archetypes and related enzymes rely on the tat translocon to transport fully folded monomeric or dimeric subunits across the cytoplasmic membrane. We have used genome sequence data to establish that there is a bias against the presence of soluble periplasmic molybdoenzymes in bacteria lacking an outer membrane.  相似文献   

5.
Bacterial genomes encode an extensive range of respiratory enzymes that enable respiratory metabolism with a diverse group of reducing and oxidizing substrates under both aerobic and anaerobic growth conditions. An important class of enzymes that contributes to this broad diversity is the complex iron-sulfur molybdoenzyme (CISM) family. The architecture of this class comprises the following subunits. (i) A molybdo-bis(pyranopterin guanine dinucleotide) (Mo-bisPGD) cofactor-containing catalytic subunit that also contains a cubane [Fe-S] cluster (FS0). (ii) A four-cluster protein (FCP) subunit that contains 4 cubane [Fe-S] clusters (FS1-FS4). (iii) A membrane anchor protein (MAP) subunit which anchors the catalytic and FCP subunits to the cytoplasmic membrane. In this review, we define the CISM family of enzymes on the basis of emerging structural and bioinformatic data, and show that the catalytic and FCP subunit architectures appear in a wide range of bacterial redox enzymes. We evaluate evolutionary events involving genes encoding the CISM catalytic subunit that resulted in the emergence of the complex I (NADH:ubiquinone oxidoreductase) Nqo3/NuoG subunit architecture. We also trace a series of evolutionary events leading from a primordial Cys-containing peptide to the FCP architecture. Finally, many of the CISM archetypes and related enzymes rely on the tat translocon to transport fully folded monomeric or dimeric subunits across the cytoplasmic membrane. We have used genome sequence data to establish that there is a bias against the presence of soluble periplasmic molybdoenzymes in bacteria lacking an outer membrane.  相似文献   

6.
Follicle cell processes (FCP) are actin-based, tube-like structures that connect the developing oocyte to the follicle cells throughout oogenesis. They were first described in Selachians (sharks) where their suggested roles were facilitating the transport of metabolites to the developing oocyte and providing structural support to the large egg cells of sharks, an early stage in the evolution of viviparity. Subsequent studies found that FCP are absent in Rajiformes (skates), suggesting that FCP may have been novel structures specific to the sharks. Here, FCP in Hydrolagus colliei, a Chimaeriform, were described. The FCP of H. colliei differ morphologically from those previously described in sharks, but as they also contain actin, they presumably play similar roles provisioning the developing oocyte and providing structural support. The presence of FCP in the order Chimaeriformes suggests that their origin predates the split of the elasmobranchs and the holocephalans.  相似文献   

7.
A highly repetitive DNA sequence of Pharbitis nil, designatedthe RsaI family, was cloned, sequenced and analyzed with respectto its genomic organization. The RsaI family is arranged intandem arrays and composed of a 32 bp repeat unit, which isthe shortest unit thus far reported for plant repetitive sequences.The RsaI family represents 3% of the total genomic DNA and thecopy number of the 32 bp unit is estimated to be about 1 ? 106per haploid genome. We suggest the existence of a higher orderrepeat unit, which may be composed of hundreds of the 32 bpunits and be repeated many times in the genome. (Received May 12, 1988; Accepted July 28, 1988)  相似文献   

8.
9.
10.
Thio-sugars have been described as potent inhibitors of cancer cell growth but the detailed mechanism of action remains unknown. Herein we investigated the mechanism of their anticancer action in the HeLa cell line. We investigated two thio-sugars: 5-thio-d-glucose (FCP1) and 6-thio-β-d-fructopyranose (FCP2). We have observed that FCP1 as well as FCP2 clearly induced oxidative DNA lesions in cancer cells and increased the level of cellular ROS. A spin trap and antioxidants have decreased the level of DNA lesions induced by FCPs. FCPs also induced significant changes in the oxidative-stress gene expression. Therefore, we assume that ROS generation is correlated with the increased NOX5 expression by FCPs. Higher cyto- and genotoxicity of FCPs for HeLa cells in a low glucose environment suggested their role in the glucose metabolism. The data indicates that thio-sugars may become drug alternatives for the cancer treatment but such undertaking needs further studies.  相似文献   

11.
A chlorophyll c binding membrane intrinsic light-harvesting complex, the fucoxanthin-chlorophyll a/c protein (FCP), was isolated from cultured discoid germilings of an edible Japanese brown alga, Cladosiphon (C.) okamuranus TOKIDA (Okinawa Mozuku in Japanese). The discoid germiling is an ideal source of brown algal photosynthetic pigment-protein complexes in terms of its size and easiness of cultivation on a large scale. Ion-exchange chromatography was crucial for the purification of FCP from solubilized thylakoid proteins. The molecular weight of the purified FCP assembly was estimated to be ~56?kDa using blue native-PAGE. Further subunit analyses using 2D-PAGE revealed that the FCP assembled as a trimer consisting of two distinguishable subunits having molecular weights of 18.2 (H) and 17.5 (L)?kDa. Fluorescence and fluorescence-excitation spectra confirmed that the purified FCP assembly was functionally intact.  相似文献   

12.
13.
14.
A photosystem I (PSI)-fucoxanthin chlorophyll protein (FCP) complex with a chlorophyll a/P700 ratio of approximately 200:1 was isolated from the diatom Phaeodactylum tricornutum. Spectroscopic analysis proved that the more tightly bound FCP functions as a light-harvesting complex, actively transferring light energy from its accessory pigments chlorophyll c and fucoxanthin to the PSI core. Using an antibody against all FCP polypeptides of Cyclotella cryptica it could be shown that the polypeptides of the major FCP fraction differ from the FCPs found in the PSI fraction. Since these FCPs are tightly bound to PSI, active in energy transfer, and not found in the main FCP fraction, we suppose them to be PSI specific. Blue Native-PAGE, gel filtration and first electron microscopy studies of the PSI-FCP sample revealed a monomeric complex comparable in size and shape to the PSI-LHCI complex of green algae.  相似文献   

15.
The photosynthetic antenna system of diatoms contains fucoxanthin chlorophyll a/c binding proteins (FCPs), which are membrane intrinsic proteins showing high homology to the light harvesting complexes (LHC) of higher plants. In the present study, we used a mild solubilization of P. tricornutum thylakoid membranes in combination with sucrose density gradient centrifugation or gelfiltration and obtained an oligomeric FCP complex (FCPo). The spectroscopic characteristics and pigment stoichiometries of the FCPo complex were comparable to FCP complexes that were isolated after solubilization with higher detergent per chlorophyll ratios. The excitation energy transfer between the FCP-bound pigments was more efficient in the oligomeric FCPo complexes, indicating that these complexes may represent the native form of the diatom antenna system in the thylakoid membrane. Determination of the molecular masses of the two different FCP fractions by gelfiltration revealed that the FCP complexes consisted of trimers, whereas the FCPo complexes were either composed of six monomers or two tightly associated trimers. In contrast to vascular plants, stable functional monomers could not be isolated in P. tricornutum. Both types of FCP complexes showed two protein bands in SDS-gels with apparent molecular masses of 18 and 19 kDa, respectively. Sequence analysis by MS/MS revealed that the 19 kDa protein corresponded to the fcpC and fcpD genes, whereas the 18 kDa band contained the protein of the fcpE gene. The presence of an oligomeric antenna in diatoms is in line with the oligomeric organization of antenna complexes in different photoautotrophic groups.  相似文献   

16.
Thomas Veith 《BBA》2007,1767(12):1428-1435
A photosystem I (PSI)-fucoxanthin chlorophyll protein (FCP) complex with a chlorophyll a/P700 ratio of approximately 200:1 was isolated from the diatom Phaeodactylum tricornutum. Spectroscopic analysis proved that the more tightly bound FCP functions as a light-harvesting complex, actively transferring light energy from its accessory pigments chlorophyll c and fucoxanthin to the PSI core. Using an antibody against all FCP polypeptides of Cyclotella cryptica it could be shown that the polypeptides of the major FCP fraction differ from the FCPs found in the PSI fraction. Since these FCPs are tightly bound to PSI, active in energy transfer, and not found in the main FCP fraction, we suppose them to be PSI specific. Blue Native-PAGE, gel filtration and first electron microscopy studies of the PSI-FCP sample revealed a monomeric complex comparable in size and shape to the PSI-LHCI complex of green algae.  相似文献   

17.
18.
19.
A new satellite DNA family, named pMaE, has been cloned from the genome of the phytoparasitic nematode, Meloidogyne arenaria (Nematoda: Tylenchida). It is represented as tandemly repeated sequences with a monomeric unit of 172 bp. The monomers are present at approximately 15700 copies per haploid genome, and represent about 5.3% of the total genomic DNA. Twenty-seven independent monomers have been cloned and sequenced. The deduced consensus sequence is 70.9% A + T rich, with frequent stretches of A and (or) T. Several direct or inverted sub-repeats are present in the sequence, which may allow the formation of a dyad structure, suggesting some potential role of this repetitive sequence in heterochromatin condensation. The monomers are very homogeneous in sequence, showing on average 1.8% divergence from their consensus sequence. Moreover, Southern blot experiments and sequence analysis of homologous monomers from the genome of geographically distinct M. arenaria populations have shown that this satellite DNA is uniformly distributed and highly conserved within the species. Therefore, it is hypothesized that this unusually low level of variability, either within the genome of a given population or between populations, could be achieved as the result of some highly effective homogenization mechanism acting upon the nematode genome.  相似文献   

20.
New repeat sequences were found in the Drosophila ananassae genome sequence. They accounted for approximately 1.2% of the D. ananassae genome and were estimated to be more abundant in genomes of its closely related species belonging to the Drosophila bipectinata complex, whereas it was entirely absent in the Drosophila melanogaster genome. They were interspersed throughout euchromatic regions of the genome, usually as short tandem arrays of unit sequences, which were mostly 175-200 bp long with two distinct peaks at 180 and 189 bp in the length distribution. The nucleotide differences among unit sequences within the same array (locus) were much smaller than those between separate loci, suggesting within-locus concerted evolution. The phylogenetic tree of the repeat sequences from different loci showed that divergences between sequences from different chromosome arms occurred only at earlier stages of evolution, while those within the same chromosome arm occurred thereafter, resulting in the increase in copy number. We found RNA polymerase III promoter sequences (A box and B box), which play a critical role in retroposition of short interspersed elements. We also found conserved stem-loop structures, which are possibly associated with certain DNA rearrangements responsible for the increase in copy number within a chromosome arm. Such an atypical combination of characteristics (i.e., wide dispersal and tandem repetition) may have been generated by these different transposition mechanisms during the course of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号