首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants affected in lamB, the structural gene for phage lambda receptor, are unable to utilize maltose when it is present at low concentrations (less than or equal 10 muM). During growth in a chemostat at limiting maltose concentrations, the lamB mutants tested were selected against in the presence of the wild-type strain. Transport studies demonstrate that most lamB mutants have deficient maltose transport capacities at low maltose concentrations. When antibodies against purified phage lambda receptor are added to a wild-type strain, transport of maltose at low concentrations is significantly reduced. These results strongly suggest that the phage lambda receptor molecule is involved in maltose transport.  相似文献   

2.
S A Benson  T J Silhavy 《Cell》1983,32(4):1325-1335
It has been proposed that the efficient localization of the outer membrane protein LamB requires a functional signal sequence and at least two additional regions contained within the mature protein. We define these regions more precisely by deletion analysis, and we describe methods for cloning deleterious lacZ fusions onto high-copy-number plasmids and generating in-frame deletions. Analysis of the effects of a series of internal lamB deletions on the export of a LamB-LacZ hybrid protein and of the LamB protein itself indicates that necessary informational signal(s) required for localization lie at the amino-terminal end of the protein. In addition, our analysis indicates that there is a region of information close to or within the fusion joint of the largest lamB-lacZ fusion that increases the efficiency of the export process. A unique deletion that removes a protein segment from amino acid 70 to 200 appears to prevent proteolytic removal of the signal sequence. Nevertheless, the mutant protein is exported to the outer membrane.  相似文献   

3.
Strains in which the lacZ gene (which specifies beta-galactosidase) is fused to a gene encoding an envelope protein often exhibit a phenotype termed overproduction lethality. In such strains, high-level synthesis of the cognate hybrid protein interferes with the process of protein export, and this leads ultimately to cell death. A variation of this phenomenon has been discovered with lacZ fusions to the gene specifying the major outer membrane porin protein OmpF. In this case, we find that lambda transducing phage carrying an ompF-lacZ fusion will not grow on a host strain that constitutively overexpresses ompF. We have exploited this observation to develop a selection for ompF mutants. Using this protocol, we have isolated mutants altered in ompF expression and have identified mutations that block OmpF export. Our results suggest that it should be possible to adapt this selection for use with other genes specifying exported proteins.  相似文献   

4.
The 42-1 lamB-lacZ gene fusion confers a conditionally lethal, export-dependent phenotype known as maltose sensitivity. A maltose-resistant mutant showing decreased beta-galactosidase activity of the hybrid protein, designated prlF1 (protein localization), was unlinked to the lamB-lacZ fusion. This mutation mapped at 70 min on the Escherichia coli linkage map and conferred maltose resistance, a 30-fold reduction in beta-galactosidase activity, and a 30% decrease in cellular growth rate at 30 degrees C that was independent of the presence of a gene fusion. prlF1 also decreased the beta-galactosidase activity and relieved the maltose sensitivity conferred by fusions of lacZ to the gene specifying the periplasmic maltose-binding protein, malE. The decrease in beta-galactosidase activity, however, was specific for exported hybrid proteins. When export of the hybrid protein was blocked by a signal sequence mutation, prlF1 decreased the beta-galactosidase activity only 2.5-fold. Similarly, prlF1 did not affect the beta-galactosidase activity of fusions of lacZ to a gene specifying a nonexported protein, malK.  相似文献   

5.
Some Escherichia coli K-12 lamB mutants, those producing reduced amounts of LamB protein (one-tenth the wild type amount), grow normally on dextrins but transport maltose when present at a concentration of 1 microM at about one-tenth the normal rate. lamB Dex- mutants were found as derivatives of these strains. These Dex- mutants are considerably impaired in the transport of maltose at low concentrations (below 10 microM), and they have a structurally altered LamB protein which is impaired in its interaction with phages lambda and K10 but still interacts with a lambda host range mutant lambda hh*. The Dex- mutants are double lamB mutants carrying one mutation, already present in the parental strains, that reduces LamB synthesis and a second that alters LamB structure. The secondary mutations, present in different independent Dex- mutants, are clustered in the same region of the lamB gene. Dex+ revertants were isolated and analyzed: when the altered LamB protein is made in wild-type amount, due to a reversion of the first mutation, the phenotype reverts to Dex+. However, these Dex+ revertants are still very significantly impaired in maltose transport at low concentrations (below 10 microM).  相似文献   

6.
A phoA-lacZ gene fusion was used to isolate mutants altered in the alkaline phosphatase signal sequence. This was done by selecting Lac+ mutants from a phoA-lacZ fusion strain that produces a membrane-bound hybrid protein and is unable to grow on lactose. Two such mutant derivatives were characterized. The mutations lie within the phoA portion of the fused gene and cause internalization of the hybrid protein. When the mutations were genetically recombined into an otherwise wild-type phoA gene, they interfered with export of alkaline phosphatase to the periplasm. The mutant alkaline phosphatase protein was found instead in the cytoplasm in precursor form. DNA sequence analysis demonstrated that both mutations lead to amino acid alterations in the signal sequence of alkaline phosphatase.  相似文献   

7.
O. Yarchuk  I. Iost  M. Dreyfus   《Biochimie》1991,73(12):1533-1541
The technique of gene fusion, in which the gene of interest, severed from its 3' end, is in-phase fused to a reporter gene--usually lacZ--is widely used to study translational regulation in Escherichia coli. Implicit in these approaches is the assumption that the activity of the ribosome binding site (RBS) fused in-phase with lacZ, does not per se modify the steady-state level of the lacZ mRNA. Herein, we have tested this hypothesis, using a model system in which the RBS of the lamB gene is fused to lacZ. Several point mutations affecting translation initiation have been formerly characterized in this RBS, and we used Northern blots to study their effect upon the lacZ mRNA pattern. Two series of constructs were assayed: in the first one, a 51-bp fragment centered around the lamB initiator codon, was inserted in front of lacZ within the natural lactose operon, whereas in the second the lacZ gene was fused to the genuine malK-lamB operon just downstream from the lamB RBS. We observed that in the first series, the concentration and average molecular weight of the lacZ mRNA dropped sharply as the efficiency of the RBS decreased. This apparently arose from a decreased stability of the message, since the mRNA patterns are equalized when the endonuclease RNase E is inactivated. We suggest that in this case the rate limiting step in the decay process is an RNase E cleavage that is outcompeted by translation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Lactose permease, the lacY gene product in Escherichia coli, is an integral membrane protein. Its induction was examined in secAts and secYts mutants by measuring o-nitrophenyl-beta-galactoside uptake activity. In contrast to the synthesis of the maltose binding protein, the malE gene product, which is dependent on the secA and secY gene products, lactose permease seemed to be produced and integrated functionally into membrane independently of SecA or SecY. Gene fusion of the lamB signal sequence to the N-terminal part of the lactose permease gene resulted in production of active fused permease in the E. coli membrane. The signal sequence did not seem to be processed, judging from its mobility on SDS polyacrylamide gel electrophoresis. E. coli cell growth was super-sensitive to induction of production of the fused permease with the signal sequence in contrast to induction of the normal lactose permease. These results are consistent with the above observation that production and integration of LacY protein into membrane is relatively independent of the SecY protein that may have a certain specificity for the signal sequence or, more generally, membrane translocation intermediates.  相似文献   

9.
Using recombinant DNA techniques, we have constructed phoA-lacZ gene fusions. Two of the fusions encode hybrid proteins containing approximately half of alkaline phosphatase at the amino terminus joined to beta-galactosidase. For the one fusion strain analyzed in detail, it was shown that the hybrid protein is found in the membrane fraction of cells. In its membrane location, the beta-galactosidase activity of the hybrid is not sufficient to support cell growth on lactose. Unexpectedly, fusions containing phoA and lacZ joined in the wrong translational reading frame were also obtained. These fusions direct the phosphate-regulated synthesis of beta-galactosidase, apparently via a translation restart mechanism. Thus, when gene fusions are constructed, the presence of properly regulated beta-galactosidase activity does not necessarily indicate that a hybrid protein is being produced.  相似文献   

10.
Among Tn10 insertions isolated in or near the malB region of Escherichia coli, one (zjb-729::Tn10) mapped between malK and lamB or late in malK and allowed MalT-independent expression of lamB. Tn10-dependent expression of a lamB-lacZ protein fusion was 25% of the expression of the fusion from the malK-lamB operon promoter in malTc constitutive strains. The maltoporin content of a strain carrying this Tn10 was about 20% that of a malTc malB+ strain. Transport of maltose at concentrations of below 10(-6) M was reduced about threefold. When maltoporin was present at about 50% of the level of malTc malB+ strains, maltose transport was largely restored. We conclude that maltoporin is not rate limiting for maltose transport in wild-type cells but becomes rate limiting when the ratio of maltoporin to other maltose transport components is reduced more than twofold.  相似文献   

11.
Wild-type V. vulnificus cannot grow using lactose as the sole carbon source or take up the sugar. However, prolonged culture of this species in media containing lactose as the sole carbon source leads to the generation of a spontaneous lactose-utilizing (LU) mutant. This mutant showed strong beta- galactosidase activity, whereas the wild-type strain showed a barely detectable level of the activity. A mutant with a lesion in a gene homologous to the lacZ of E. coli in the bacterium no longer showed beta-galactosidase activity or generated spontaneous LU mutants, suggesting that the lacZ homolog is responsible for the catabolism of lactose, but the expression of the gene and genes for transport of lactose is tightly regulated. Genetic analysis of spontaneous LU mutants showed that all the mutations occur in a lacI homolog, which is located downstream to the lacZ and putative ABC-type lac permease genes. Consistent with this, a genomic library clone containing the lacI gene, when present in trans, made the spontaneous LU mutants no longer able to utilize lactose as the sole carbon source. Taken together with the observation that excessive amounts of exogenously supplemented possible catabolic products of lactose have negative effects on the growth and survivability of V. vulnificus, we suggest that V. vulnificus has evolved to carry a repressor that tightly regulates the expression of lacZ to keep the intracellular toxic catabolic intermediates at a sublethal level.  相似文献   

12.
Phenotypic characterization and mapping of more than 50 Mal(-) mutations located in the malB region lead one to divide the site for Mal(-)lambdas mutations (formerly called gene malB) in that region, into two adjacent genetic segments malJ and malK. malJ and malK are both involved in maltose permeation. It is suggested that (i) malK and lamB, the only known gene specifically involved in phage lambda adsorption (20), constitute an operon of polarity malK lamB. (ii) malJ and malK correspond to two different genes, and (iii) a promoter for the malK lamB operon is located between malJ and malK. Since lambda receptors and maltose permease are inducible by maltose and absent in malT mutants, it is likely that the expression of the malK lamB operon is controlled by the product of gene malT, the positive regulatory gene of the maltose system.  相似文献   

13.
On Some Genetic Aspects of Phage λ Resistance in E. COLI K12   总被引:12,自引:0,他引:12  
J. P. Thirion  M. Hofnung 《Genetics》1972,71(2):207-216
Most mutations rendering E. coli K12 resistant to phage lambda, map in two genetic regions malA and malB.-The malB region contains a gene lamB specifically involved in the lambda receptor synthesis. Twenty-one independent lamB mutations studied by complementation belonged to a single cistron. This makes it very likely that lamB is monocistronic. Among the lamB mutants some are still sensitive to a host range mutant of phage lambda. Mutations mapping in a proximal gene essential for maltose metabolism inactivate gene lamB by polarity confirming that both genes are part of the same operon. Because cases of intracistronic complementation have been found, the active lamB product may be an oligomeric protein.-Previously all lambda resistant mutations in the malA region have been shown to map in the malT cistron. malT is believed to be a positive regulatory gene necessary for the induction of the "maltose operons" in the malA region and in the malB region of the E. coli K12 genetic map. No trans dominant malT mutation have been found. Therefore if they exist, they occur at a frequency of less than 10(-8), or strongly reduce the growth rate of the mutants.  相似文献   

14.
We have used fusions of the outer membrane protein LamB to beta-galactosidase (encoded by lacZ) to study the protein export process. This LamB-LacZ hybrid protein blocks export when synthesized at high levels, as evidenced by inducer (maltose) sensitivity, a phenomenon termed LacZ hybrid jamming. The prlF1 mutation relieves LacZ hybrid jamming and allows localization of the fusion protein to a noncytoplasmic compartment. prlF1 and similar alleles are gain-of-function mutations. Null mutations in this gene confer no obvious phenotypes. Extragenic suppressors of a gain-of-function prlF allele have been isolated in order to understand how this gene product affects the export process. The suppressors are all lon null mutations, and they are epistatic to all prlF phenotypes tested. Lon protease activity has been measured in prlF1 cells and shown to be increased. However, the synthesis of Lon is not increased in a prlF1 background, suggesting a previously unidentified mechanism of Lon activation. Further analysis reveals that prlF1 activates degradation of cytoplasmically localized precursors in a Lon protease-dependent manner. It is proposed that accumulation of precursors during conditions of hybrid protein jamming titrates an essential export component(s), possibly a chaperone. Increased Lon-dependent precursor degradation would free this component, thus allowing increased protein export under jamming conditions.  相似文献   

15.
A rapid immunological method for trapping and selection of functionally regulated prokaryotic promoters is described. The method is based on application of a novel mini-Tn5 derived promoter probe (pUTTKZY-promoterless lacZY as a reporter and kanamycin resistance) to mutagenise a plant growth promoting fluorescent pseudomonad, Pseudomonas fluorescens 54/96. The transposon allows selection of operon fusion mutants (lacZY(+)) directly on media containing lactose as a sole carbon source as well as selection for kanamycin and lacZ (beta-galactosidase) expression on X-gal indicator media. We have extended the technique to target the surface expression of the induced lactose permease gene (lacY) from mutagenised libraries and the immuno-capture of bacteria with magnetic beads and anti-LacY monospecifc antisera. The benefits of the lacZY reporter are that a library can be rapidly generated and screened in vitro to isolate non-expressed mutants for further in situ screening. Here we demonstrate the development and utility of the technique and its potential as a differential display method for the isolation of promoters that direct regulated gene expression in the phytosphere, or under other imposed conditions.  相似文献   

16.
In the current study, lactose permease mutants were isolated which exhibited an enhanced recognition for maltose (an alpha-glucoside) but a diminished recognition for thiodigalactoside, TDG (a beta-galactoside). Maltose/TDGR mutants were obtained from four different parental strains encoding either a wild-type permease (pTE18), a mutant lactose permease which recognizes maltose (pB15) or mutant lactose permeases which recognize maltose but are resistant to inhibition by cellobiose (pTG and pBA). A total of 27 independent mutants were isolated: 12 from pTE18, 10 from pB15, 3 from pTG, and 2 from pBA. DNA sequencing of the 27 mutants revealed that the mutants contain single base pair substitutions within the lac Y gene which result in single amino acid substitutions within the lactose permease. All of the mutants obtained from pTE18, pTG, and pBA involved a change of Tyr-236 to histidine, phenylalanine, or asparagine. From pB15, three different types of mutants were obtained: Tyr-236 to histidine, Ile-303 to phenylalanine, or His-322 to asparagine. When assayed for [14C]maltose transport, the maltose/TDGR mutants were seen to transport maltose significantly faster than the wild type. Furthermore, although TDG was shown to inhibit the uptake of maltose in the four parental strains, all of the mutant strains exhibited a dramatic resistance to TDG inhibition. Most of the maltose/TDGR mutants were also shown to be very defective in the transport of lactose. However, certain mutants (i.e., Asn-322) exhibited moderate lactose transport activity. Finally, it was observed that all of the mutant strains were unable to facilitate the uphill accumulation of beta-methylthiogalactopyranoside. The locations of the amino acid substitutions are discussed with regard to their possible role in sugar recognition.  相似文献   

17.
Lactose metabolism in Erwinia chrysanthemi.   总被引:18,自引:11,他引:7       下载免费PDF全文
Wild-type strains of the phytopathogenic enterobacterium Erwinia chrysanthemi are unable to use lactose as a carbon source for growth although they possess a beta-galactosidase activity. Lactose-fermenting derivatives from some wild types, however, can be obtained spontaneously at a frequency of about 5 X 10(-7). All Lac+ derivatives isolated had acquired a constitutive lactose transport system and most contained an inducible beta-galactosidase. The transport system, product of the lmrT gene, mediates uptake of lactose in the Lac+ derivatives and also appears to be able to mediate uptake of melibiose, raffinose, and galactose. Two genes encoding beta-galactosidase enzymes were detected in E. chrysanthemi strains. That mainly expressed in the wild-type strains was the lacZ product. The other, the lacB product, is very weakly expressed in these strains. These enzymes showed different affinities for the substrates o-nitrophenyl-beta-D-galactopyranoside and lactose and for the inhibitors isopropyl-beta-D-thiogalactopyranoside and galactose. The lmrT and lacZ genes of E. chrysanthemi, together with the lacI gene coding for the regulatory protein controlling lacZ expression, were cloned by using an RP4::miniMu vector. When these plasmids were transferred into Lac- Escherichia coli strains, their expression was similar to that in E. chrysanthemi. The cloning of the lmrT gene alone suggested that the lacZ or lacB gene is not linked to the lmrT gene on the E. chrysanthemi chromosome. One Lac+ E. chrysanthemi derivative showed a constitutive synthesis of the beta-galactosidase encoded by the lacB gene. This mutation was dominant toward the lacI lacZ cloned genes. Besides these mutations affecting the regulation of the lmrT or lacB gene, the isolation of structural mutants unable to grow on lactose was achieved by mutagenic treatment. These mutants showed no expression of the lactose transport system, the lmrT mutants, or the mainly expressed beta-galactosidase, lacZ mutants. The lacZ mutants retained a very low beta-galactosidase level, due to the lacB product, but this level was low enough to permit use of the lacZ mutants for the construction of gene fusions with the Escherichia coli lac genes.  相似文献   

18.
We have constructed a fine-structure genetic map of the maltose transport operon in Salmonella typhimurium. We have isolated mal mutants by using indicator plates, penicillin selection, or a proton suicide technique. Mutants were obtained as spontaneous events or were induced by chemical mutagenesis and transposon insertion. Tn10 and Mu d(lac Ap)1 insertion mutations were used to create deletions. Mutations were also obtained in a gene that is equivalent to lamB in Escherichia coli, which codes for the lambda bacteriophage receptor. The gene products in the mutants were characterized by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis and immunoblotting. Our data indicate that the location of this operon on the Salmonella chromosome as well as the gene order and its orientation are the same as those in E. coli. This map will be useful in studying the mechanism of periplasmic transport in S. typhimurium.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号