首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
城市湖泊富营养化成因和特征*   总被引:20,自引:1,他引:20  
城市湖泊的功能主要体现在旅游、如愿、洪涝调蓄排水、调节气候以及改善城市生态环境等方面。根据湖泊所处地理位置和湖泊水质退化现象,阐述了城市湖泊水体从贫营养到富营养转变的主要原因;从水质的理化指标、底质污染物含量和水生态系统等方面初步时论了城市型浅水湖泊富营养化的特征。同非城市湖泊相比:大部分城市湖泊的水体透明度下降,污染严重的湖泊还会出现水体发黑或出现水华;水质和底质的氮磷及其它污染物含量较高,水生态系统急剧退化,水生植物以浮游植物为主,藻类大量繁殖,高等水生植物不断消亡。根据综合营养度指数对我国主要城市湖泊进行分级评价的结果表明,我国城市湖泊均达到了富营养化或严重富营养化程度。  相似文献   

3.
4.
Shoe Lake and East Graham Lake, part of a small chain of lakes in southeastern Michigan, USA, differ in nutrient loading and in the structure and productivity of their aquatic plant communities. A comparative study of species frequency and biomass distributions, nutrient contents, and responses to experimental nutrient enrichment and shading, was conducted to determine the principal factors controlling the macrophyte dynamics. A central objective was to address the question of why rooted macrophyte growth declines with eutrophication, and to test existing models designed to explain this phenomenon. In the more eutrophic Shoe Lake, diversity and productivity of rooted macrophytes were relatively low, restricted primarily by combined shading of phytoplankton, periphyton, and non-rooted macrophytes (principally Ceratophyllum demersum, along with Utricularia vulgaris and Cladophora fracta). In the less eutrophic East Graham Lake, lower nitrogen availability restricted the growth of all of these shading components, resulting in clearer water and higher productivity and diversity of rooted macrophytes. The macrophytes did not allelopathically suppress the phytoplankton in East Graham Lake. The results supported a direct relationship between nutrient loading, increasing growth of phytoplankton, periphyton and non-rooted macrophytes, and decline of rooted macrophytes.  相似文献   

5.
The aim of this study was to examine whether littoral nematode community patterns are shaped by lake trophic state. It was hypothesized that trophic level is associated negatively with the proportion of omnivores and positively with the percentages of bacterial feeders, but not at all with the diversity, abundance, and biomass of freshwater nematodes. Sediment samples were taken at littoral sites of eight southern Swedish lakes of different trophy in spring and autumn 2007. Trophic level was found to strongly influence species richness, as oligotrophic and mesotrophic lakes supported the greatest species numbers, whereas nematode abundance, biomass, and Shannon index were unaffected. Furthermore, our results indicated effects on the nematode community’s trophic structure, with a larger proportion of predatory nematodes in oligotrophic and mesotrophic lakes but no differences in the other feeding types (bacteria, algae and suction feeders, omnivorous species). Multivariate analysis indicated a shift in species compositions along the threshold from mesotrophic to eutrophic conditions, with the presence of Tobrilus gracilis, Monhystera paludicola, Brevitobrilus stefanskii, and Ethmolaimus pratensis related to the latter. Nematode communities in oligotrophic and mesotrophic lakes were characterized by a similar species composition, with pronounced occurrences of Eumonhystera longicaudatula, Semitobrilus cf. pellucidus, Prodesmodora circulata, and Rhabdolaimus terrestris. Overall, the results suggested that lake trophic state is a major factor structuring littoral nematode communities, although intra-lake variations might be of importance as well.  相似文献   

6.
提高水体净化能力控制湖泊富营养化   总被引:24,自引:0,他引:24  
濮培民  李正魁  王国祥 《生态学报》2005,25(10):2757-2763
建立了湖泊污染物质动力学方程,根据我国湖泊和美国O keechobee湖资料,确定了控制藻类暴发的总磷阈值为0.035m g/L,总氮阈值为0.350m g/L(滇池)和1.050m g/L(太湖);用实测资料,计算得到需要削减的外污染源滇池为总磷、总氮各78%,太湖为总磷69%、总氮56%。提出通过提高水体净化能力可以控制湖泊富营养化的理论依据和如下技术路线:提高湖泊净化率,使其超过输入的污染率,在湖内实现浓度低于控制藻类水华暴发所需要的磷、氮阈值;因地制宜综合运用到太湖、巢湖、滇池等一类大、中型湖泊,加强管理,就可以在占湖泊7%(滇池)和4%(太湖)的湖面上,依托科学布设控制其生长的凤眼莲,将其规模化地加工为有益产品,从而有效地去除湖泊中的营养盐,将水体综合净化率比现有净化率在滇池提高4.6倍,在太湖提高2.1倍,实现控制湖泊富营养化目标,并同步地在约3~4倍相应面积上修复健康水生态系统。  相似文献   

7.
Four thousand eight hundred years ago hemlock (Tsuga canadensis) populations were decimated throughout eastern North America. We have studied the effects of this loss from the terrestrial community on three Southern Ontario lakes: Little Round Lake, Sunfish Lake, and McKay Lake. This study includes the use of cladocerans, diatoms, chrysophytes, and bacterial pigments to assess the limnologic changes that occurred in these lakes. Each lake experienced a change in trophic status that coincided with the loss of hemlock from its catchment, but the change in the aquatic biota was different in each lake. The lakes' size may have been the most influential factor governing the response to this terrestrial disturbance.  相似文献   

8.
The dilemma of controlling cultural eutrophication of lakes   总被引:3,自引:0,他引:3  
The management of eutrophication has been impeded by reliance on short-term experimental additions of nutrients to bottles and mesocosms. These measures of proximate nutrient limitation fail to account for the gradual changes in biogeochemical nutrient cycles and nutrient fluxes from sediments, and succession of communities that are important components of whole-ecosystem responses. Erroneous assumptions about ecosystem processes and lack of accounting for hysteresis during lake recovery have further confused management of eutrophication. I conclude that long-term, whole-ecosystem experiments and case histories of lake recovery provide the only reliable evidence for policies to reduce eutrophication. The only method that has had proven success in reducing the eutrophication of lakes is reducing input of phosphorus. There are no case histories or long-term ecosystem-scale experiments to support recent claims that to reduce eutrophication of lakes, nitrogen must be controlled instead of or in addition to phosphorus. Before expensive policies to reduce nitrogen input are implemented, they require ecosystem-scale verification. The recent claim that the ‘phosphorus paradigm’ for recovering lakes from eutrophication has been ‘eroded’ has no basis. Instead, the case for phosphorus control has been strengthened by numerous case histories and large-scale experiments spanning several decades.  相似文献   

9.
SUMMARY. 1. Eutrophication of water bodies involves the enrichment of plant nutrients, often followed by significant shifts in the phytoplankton towards Cyanobacteria. When comparing different aquatic systems, even with similar nutrient contents and in the same climatic region, inverse deductions are not valid; i.e. (a) the presence of Cyanobacteria does not necessarily indicate eutrophic conditions, or (b) eutrophic or even poly-trophic conditions do not necessarily support cyanobacterial development.
2. Above a threshold of 10 μg 1−1 total phosphorus, the development of Cyanobacteria can be described by physical factors, such as water column stability. By characterizing different forms of turbulence, the presence or absence of Cyanobacteria in lakes and rivers can be predicted.
3.When the turbulence of the water column is rather low, as it is in sheltered or meromictic lakes, Cyanobacteria can build up dense populations. In nutrient poor systems, species of Oscillatoria and (seldom) Aphanizomenon are dominating.
4.If the turbulence of the water column is high (mixing depth much greater than euphotic depth) or the mixing pattern is irregular, as in slowly flowing or regulated rivers, Cyanobacteria are outcompeted.
5. In the presence of frequent or permanent turbulence, but with mixing depths lower or not much greater than the euphotic zone (as it is the case in shallow, unstratified lakes, mostly eutrophic or even hypertrophic), Cyanobacteria can outgrow normally dominant r -strategists under conditions of low N:P ratios, high water temperatures, pH >9.0 or low light availabilities.
6. If turbulence is comparatively great (10 to $15 m) and stable for a longer period of time, some cyanobacteria are able to adapt.
7. Our statements are discussed on the basis of physiological characteristics.  相似文献   

10.
Aquatic macrophytes are one of the biological quality elements in the Water Framework Directive (WFD) for which status assessments must be defined. We tested two methods to classify macrophyte species and their response to eutrophication pressure: one based on percentiles of occurrence along a phosphorous gradient and another based on trophic ranking of species using Canonical Correspondence Analyses in the ranking procedure. The methods were tested at Europe-wide, regional and national scale as well as by alkalinity category, using 1,147 lakes from 12 European states. The grouping of species as sensitive, tolerant or indifferent to eutrophication was evaluated for some taxa, such as the sensitive Chara spp. and the large isoetids, by analysing the (non-linear) response curve along a phosphorous gradient. These thresholds revealed in these response curves can be used to set boundaries among different ecological status classes. In total 48 taxa out of 114 taxa were classified identically regardless of dataset or classification method. These taxa can be considered the most consistent and reliable indicators of sensitivity or tolerance to eutrophication at European scale. Although the general response of well known indicator species seems to hold, there are many species that were evaluated differently according to the database selection and classification methods. This hampers a Europe-wide comparison of classified species lists as used for the status assessment within the WFD implementation process.  相似文献   

11.
Phytoplankton constitutes a diverse array of short-lived organisms which derive their nutrients from the water column of lakes. These features make this community the most direct and earliest indicator of the impacts of changing nutrient conditions on lake ecosystems. It also makes them particularly suitable for measuring the success of restoration measures following reductions in nutrient loads. This paper integrates a large volume of work on a number of measures, or metrics, developed for using phytoplankton to assess the ecological status of European lakes, as required for the Water Framework Directive. It assesses the indicator strength of these metrics, specifically in relation to representing the impacts of eutrophication. It also examines how these measures vary naturally at different locations within a lake, as well as between lakes, and how much variability is associated with different replicate samples, different months within a year and between years. On the basis of this analysis, three of the strongest metrics (chlorophyll-a, phytoplankton trophic index (PTI), and cyanobacterial biovolume) are recommended for use as robust measures for assessing the ecological quality of lakes in relation to nutrient-enrichment pressures and a minimum recommended sampling frequency is provided for these three metrics.  相似文献   

12.
Until the E.U. Water Framework Directive listed benthic invertebrates as a biotic element to be used for ecological classification of lakes, techniques for the assessment of the response of littoral invertebrates to anthropogenic pressures were extremely limited compared with those of rivers and lake profundal zones. We describe here the development of an ecological classification model based on changes of littoral invertebrate assemblages across a gradient of eutrophication, which is the most widespread anthropogenic pressure on lakes across Europe. The model comprises three derived parameters, two of which were developed from taxon-specific optima along a total phosphorus gradient calculated using canonical correspondence analysis, and the third based on invertebrate abundance. Combining the parameter metrics, we can estimate the ecological quality ratio (EQR), relative to those from paleolimnologically-confirmed reference lakes. The model was tested using independent samples collected from both hard and soft substrata and across two seasons from 45 lakes, comprising three alkalinity groups (n = 15 in each), and across gradients in water column total phosphorus concentrations. For hard substrata, EQRs were related consistently and highly significantly to water column concentrations of total phosphorus, accounting for the majority of the variance in every alkalinity group. For samples taken from soft substrata, a significant relationship was found only for high alkalinity lakes, accounting for a moderate proportion of the variability in water column total phosphorus concentrations. Our results compare highly favourably with those from other aquatic ecological assessment methods, irrespective of the faunal or floral group upon which they are based, demonstrating that littoral invertebrate assemblages can provide a statistically robust prediction of nutrient status when samples are collected from hard substrata. While the method was developed specifically to assess nutrient pressures on littoral invertebrates, many lakes are subject to multiple pressures. The development of classification models that incorporate multiple pressures presents a particularly significant challenge for the implementation of the Water Framework Directive, requiring both reliable identification of minimally-impacted reference states and incorporation of pressures that are unlikely to interact in predictable ways.  相似文献   

13.
The area of Mazurian Lakeland is the biggest lake concentration in Middle Europe. Its lakes are subjected to various man-made impacts and disturbances, resulting in many changes in the aquatic environment and the fish stocks. Most frequently these changes are typical of the process of accelerated eutrophication, and are connected with undesirable succession in the fish stocks. Generally, predatory species, which naturally regulate the stock and maintaiil its balance, disappear from the environment, as do other valuable fish species, e.g. coregonids. At the same time food resources (weed fishes, plankton) for those species develop abundantly.
Assessment of the management of lakes by one of the State Lake Fish Farms located in Mazurian Lakeland is presented against a background of various man-made influences on the aquatic ecosystems in this region. The State Fish Farm under study manages 56 lakes of total area over 5800 ha. For each of these lakes detailed records were available of the commercial catches of particular species and their artificial stockings over a period of 31 years. These, their trends and inter-relationships have been analyzed. Artificial stockings represented one of the best methods of counteracting adverse changes taking place in the fish stocks, with a simultaneous utilization of the productive potential of the lakes. Against this background, forecasts are made of the expected changes, and basic approaches to the proper management of the fish stocks are suggested.  相似文献   

14.
The role of the microbial communities in the classical planktonic food web and its response to eutrophication in shallow lakes is still contradictory. Mediterranean shallow lakes with different eutrophication levels were sampled to study the influence of eutrophication on the microbial food web (MFW) and their contribution to the planktonic food web. Percentage of ciliate biomass in the metazooplankton (MZP) showed a U-shaped trend with eutrophication, with maximum at both ends of the chlorophyll-a (Chla) gradient. The MZP to phytoplankton ratio demonstrated a unimodal pattern with minimum values at the two ends of the Chla gradient and maximum values in the Chla range 5-10 μg l?1. In contrast, the MFW to phytoplankton ratio reached its minimum in the central part of the Chla gradient and maximum values at the extremes of the gradient. These patterns support the hypothesis that the relative importance of bacteria and ciliates is lowest in mesotrophic shallow lakes, and highest in oligotrophic and hypereutrophic systems. These results stress the importance of protozoan in the trophic web, and indicate it is essential to include this group, especially ciliates, when quantifying zooplankton in warm shallow lakes.  相似文献   

15.
1. Eutrophication is a serious threat in many parts of the world, and identifying the environmental factors that determine the spatial distribution of eutrophicated waterbodies as well as the development of management tools is a challenge. 2. In this study, data from the Ile‐de‐France region were analysed to determine if catchment scale environmental variables could predict concentrations of chlorophyll a (used as a proxy for eutrophication status) of artificial lakes and reservoirs. 3. General additive models (GAM) and random forest models (RF) displayed greater predictive power than generalised linear models, indicating the importance of non‐monotonic relationships. Using RF modelling, very high predictive accuracy was achieved for both continuous and binomial (eutrophic or not) response variables (continuous: R2 = 0.715; binomial: kappa = 0.764, 89% of waterbodies were accurately predicted). The better predictive power and robustness of RF versus GAM was attributed to the formers ability to better handle complex interactions between predictors and to account for threshold effects. 4. Our results confirmed the close link between the water quality of lakes and reservoirs and the characteristics of their catchments. Moreover, we also showed that (i) simple (e.g. linear and/or monotonic) relationships between catchment land use and water quality were only found for sub‐regional datasets, and (ii) land use needs to be considered in association with complementary environmental variables (hydromorphological variables) to best assess its impact on water quality.  相似文献   

16.
焦聪聪  赵大勇  曾巾 《生态学报》2024,44(14):5925-5944
细菌是湖泊生态系统的重要组成部分,在驱动湖泊生态系统元素物质循环和调控湖泊水质方面发挥关键性作用。揭示湖泊细菌群落多样性的形成和维持机制,即群落构建机制,是湖泊微生物生态学研究中的核心目标。近年来,微生物组学技术的发展,极大推动了湖泊细菌群落构建机制的研究。富营养化是当前我国湖泊生态系统面临的最大环境挑战之一,也是决定湖泊细菌群落组成和多样性的重要因素。研究综述了湖泊细菌群落构建机制的理论基础和发展脉络。概述了湖泊细菌群落构建机制的主要分析方法。总结了富营养化对湖泊细菌群落构建机制的影响的最新研究进展。针对富营养化影响下湖泊细菌群落构建机制研究所面临的问题,提出了未来的研究展望。  相似文献   

17.
Kitner  Miloslav  Poulícková  Aloisie 《Hydrobiologia》2003,506(1-3):519-524

The littoral zone of shallow water bodies in the Czech Republic has been studied quite consistently at several fishponds. The use of algae, especially diatoms, for the monitoring of the state of lotic freshwater also has a long tradition. The main objective of the presented paper is to validate the feasibility of the use of littoral periphyton comunities for the biomonitoring of standing waters. At the investigated sites, littoral periphytic diatoms were studied together with selected enviromental variables (pH, conductivity, nutrients – especially total phosphorus) on three types of natural substrates (epilithon, epiphyton, epipelon). The evaluation of the diatom community was performed on the basis of the checklists of algal indicator species published by authors from the Czech Republic, Austria and the Netherlands. The data were subjected to statistical software NCCS 2000 (GLM Anova and ``Ward's minimum'' variance cluster analysis). Littoral periphytic diatoms appear to be good indicators of the fishpond water quality. The selected substrates show non-significant differences therefore the average values from all substrates were used. The best indicatory system for evaluation of Czech fishponds was van Dam's index.

  相似文献   

18.
This paper assesses the chemical and mechanical impact of algal wash (Cladophora, Spirogyra, Chara) upon the lakeside reed belt (Phragmites australis) using field mapping methods, bioassays with Scenedesmus acutus in batch culture, and field experiments. Heavy mats of filamentous algae are correlated with a reduction in number of the outermost reed stalks. The water pressed from decaying heaps of Cladophora and Spirogyra reduced the growth rate of Scenedesmus significantly, but mats from Chara did not. It is assumed that the toxic substance is an organic compound. In field experiments the detrimental effect could not be clearly evidenced. The reasons for this are discussed. It is concluded that mechanical impact is of major importance.  相似文献   

19.
The content of chlorophyll a and its degradation products has been measured in cores of nine volcanic lakes in the Eifel region. The primary production increased at the beginning of Post Glacial Period but degreased after Atlantic Period. During the last three decades the production of biomass increased again due to anthropogenic eutrophication.  相似文献   

20.
One purpose of river maintenance within Britain is to deliver given standards of land drainage service relating to the control, within acceptable limits, of flooding and waterlogging on riparian, mainly agricultural land. Aquatic weed removal is a major maintenance activity. Authorities responsible for cost-effective river maintenance need to determine the extent and timing of vegetation removal in channels of various types. The impact of maintenance is being studied on 12 sites in five regions of the National Rivers Authority (NRA) in England and Wales. The impact of differing maintenance regimes on flooding and waterlogging and the consequences for agricultural performance are assessed. The longevity of maintenance in terms of the time taken for the without maintenance watercourse condition to be reinstated following maintenance has been determined for gravel, sand and silt bed rivers on which vegetation cutting has been performed. The estimated benefits of river maintenance are set against costs to help formulate best maintenance strategies and prioritise and justify maintenance works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号