首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Endosymbionts that manipulate the reproduction of their hosts have been reported widely in invertebrates. One such group of endosymbionts is the male-killers. To date all male-killers reported are bacterial in nature, but comprise a diverse group. Ladybirds have been described as a model system for the study of male-killing, which has been reported in multiple species from widespread geographic locations. Whilst criteria of low egg hatch-rate and female-biased progenic sex ratio have been used to identify female hosts of male-killers, variation in vertical transmission efficiency and host genetic factors may result in variation in these phenotypic indicators of male-killer presence. Molecular identification of bacteria and screening for bacterial presence provide us with a more accurate method than breeding data alone to link the presence of the bacteria to the male-killing phenotype. In addition, by identifying the bacteria responsible we may find evidence for horizontal transfer between endosymbiont hosts and can gain insight into the evolutionary origins of male-killing. Phylogenetic placement of male-killing bacteria will allow us to address the question of whether male-killing is a potential strategy for only some, or all, maternally inherited bacteria. Together, phenotypic and molecular characterisation of male-killers will allow a deeper insight into the interactions between host and endosymbiont, which ultimately may lead to an understanding of how male-killers identify and kill male-hosts.  相似文献   

2.
Ladybirds are a hot-spot for the invasion of male-killing bacteria. These maternally inherited endosymbionts cause the death of male host embryos, to the benefit of female sibling hosts and the bacteria that they contain. Previous studies have shown that high temperatures can eradicate male-killers from ladybirds, leaving the host free from infection. Here we report the discovery of two maternally inherited sex ratio distorters in populations of a coccinellid, Coccinella undecimpunctata, from a hot lowland region of the Middle East. DNA sequence analysis indicates that the male killing is the result of infection by Wolbachia, that the trait is tetracycline sensitive, and that two distinct strains of Wolbachia co-occur within one beetle population. We discuss the implications of these findings for theories of male-killing and suggest avenues for future field-work on this system.  相似文献   

3.
Maternally inherited bacterial endosymbionts can kill male embryos of their arthropod hosts to enhance the transmission efficiency of the endosymbionts. The resources from killed male eggs can be reallocated to infected female hatchlings as additional maternal investment. As a result, the number of offspring per patch and the maternal investment per offspring are expected to differ from the original optimal values for the host mother. Thus, in response to infection, these trait values should be adjusted to maximize the lifetime reproductive success of host females and the fitness of inherited endosymbionts as well. Here, we examined clutch size, egg size, and the proportion of trophic eggs (i.e., production of unhatched eggs, a maternal phenotype) per clutch of host mothers infected with male-killing bacteria. First, we developed a mathematical model to predict the optimal clutch size and trophic egg proportion in uninfected and infected females. Next, we experimentally compared these life-history traits in a ladybird, Harmonia yedoensis, between females infected or uninfected with male-killing Spiroplasma bacteria. Consistent with our predictions, clutch size was larger, egg size was smaller, and trophic egg proportion was lower in infected H. yedoensis females, compared with uninfected females. To our knowledge, this is the first empirical demonstration of variation in these life-history traits depending on infection with bacterial endosymbionts.  相似文献   

4.
Many species of arthropod are infected by deleterious inherited micro-organisms. Typically these micro-organisms are inherited maternally. Consequently, some, particularly bacteria of the genus Wolbachia, employ a variety of strategies that favour female over male hosts. These strategies include feminisation, induction of parthenogenesis and male-killing. These strategies result in female biased sex ratios in host populations, which lead to selection for host factors that promote male production. In addition, the intra-genomic conflict produced by the difference in transmission of these cytoplasmic endosymbionts and nuclear factors will impose a pressure favouring nuclear factors that suppress the effects of the symbiont. During investigations of the diversity of male-killing bacteria in ladybirds (Coccinellidae), unexpected patterns of vertical transmission of a newly discovered male-killing taxon were observed in the ladybird Cheilomenes sexmaculata. Initial analysis suggested that the expression of the bacterial male-killing trait varies according to the male(s) a female has mated with. By swapping males between females, a male influence on the expression of the male-killing trait was confirmed. Experiments were then performed to determine the nature of the interaction. These studies showed that a single dominant allele, which rescues male progeny of infected females from the pathological effect of the male-killer, exists in this species. The gene shows typical Mendelian autosomal inheritance and is expressed irrespective of the parent from which it is inherited. Presence of the rescue gene in either parent does not significantly affect the inheritance of the symbiont. We conclude that C. sexmaculata is host to a male-killing γ-proteobacterium. Further, this beetle is polymorphic for a nuclear gene, the dominant allele of which rescues infected males from the pathogenic effects of the male-killing agent. These findings represent the first reported case of a nuclear suppressor of male-killing in a ladybird. They are considered in regard to sex ratio and intra-genomic conflict theories, and models of the evolutionary dynamics and distribution of inherited symbionts.  相似文献   

5.
Several lineages of maternally inherited symbionts have evolved the ability to kill infected females' sons, a phenomenon known as male-killing. Male-killing varies in its timing, from early (death during embryogenesis) to late (mortality of late larval instars). Following the observation that treatment of male-killer infected adult females Hypolimnas bolina with tetracycline, a bacteriostatic antibiotic, produces a delay in the timing of male death, we hypothesized that early male-killers possess the ability to kill males through bacterial activity outside of embryogenesis. We verified this hypothesis by showing that treatment of surviving larvae with the bacteriocidal antibiotic rifampicin rescues males. This discounted the hypothesis that delayed death occurred due to postponed effects of toxins produced at earlier stages, and thus supported the importance of bacterial activity in the larval phase in delayed male-killing. These results argue against the view that early male-killing is achieved by specifically targeting an early developmental process within the sex determination pathway.  相似文献   

6.
Male-killing endosymbionts have been widely reported in the invertebrates and are highly prevalent in the Coccinellidae. The presence of male-killers can lead to extreme bias in host population sex ratios and may have important and far-reaching consequences for the life-history and evolution of their hosts. Male-killers may have direct and indirect effects on host fitness and reproductive behaviour, as well as affecting the host genome, either via strong selection pressure imposed by highly female-biased population sex ratios or by selective sweeps caused as a male-killer conferring an advantage to infected individuals spreads through a population. Criteria used to predict which species are liable to male-killer invasion, based on a variety of ecological factors, have been produced. In summary male-killers are predicted to occur in aphidophageous species, that lay eggs in clutches, show sibling egg consumption and are liable to neonatal larval mortality due to starvation. We assayed 30 species of Coccinellid for the presence of such male-killers to assess the predictive accuracy of the criteria. Male-killers were identified in 8 species in which they were predicted to occur and were absent from all 10 species predicted not to harbor them. Analysis of the remaining 12 species, where male-killers were predicted by the original criteria, but where they were not found, allowed us to identify areas where the criteria can be refined and improved. We conclude that whilst the original criteria give a reasonably accurate prediction, there are refinements and improvements, concerning details of host diet and life-history, which make them more robust, especially in the light of discoveries of male-killing suppressors and when incorporated give a better fit to our findings from field samples.  相似文献   

7.
The inherited bacterium Wolbachia spreads through the manipulation of host reproduction, and has been suggested to be an important factor in arthropod evolution, from host speciation to the evolution of sex-determination systems. Past work has shown that members of this group may produce cytoplasmic incompatibility, feminize genetically male hosts, and induce host parthenogenesis. Here, we report an expansion of the range of reproductive manipulations produced by members of this clade, recording Wolbachia strains that kill male hosts during embryogenesis in two host species, the ladybird Adalia bipunctata, and the butterfly Acraea encedon. Both male-killing bacteria belong to the B group of Wolbachia. However, phylogenetic analyses were unable to resolve whether the bacteria in the two species are monophyletic, or represent independent origins of male-killing among the B-group Wolbachia. We also found significant divergence within the wsp gene of Wolbachia strains found in different A. bipunctata individuals, suggesting this host species contains two Wolbachia strains, diverged in wsp sequence but monophyletic. Our observations reinforce the notion that Wolbachia may be an important agent driving arthropod evolution, and corroborates previous suggestions that male-killing behaviour is easily evolved by invertebrate symbionts.  相似文献   

8.
The diversity of endosymbiotic bacteria that kill male host offspring during embryogenesis and their frequencies in certain groups of host taxa suggest that the evolution of male killing and the subsequent spread of male-killing symbionts are primarily determined by host life history characteristics. We studied the 10-spot ladybird beetle, Adalia decempunctata L. (Coleoptera: Coccinellidae), in which male killing has not been recorded previously, to test this hypothesis, and we also assessed the evolution of the male killer identified by DNA sequence analysis. Our results show that A. decempunctata harbors male-killing Rickettsia (α-proteobacteria). Male-killing bacteria belonging to the genus Rickettsia have previously been reported only for the congeneric two-spot ladybird beetle, Adalia bipunctata L. Phylogenetic analysis of Rickettsia DNA sequences isolated from different populations of the two host species revealed a single origin of male killing in the genus Rickettsia. The data also indicated possible horizontal transfer of symbionts between host species. In addition, A. bipunctata is known to bear at least four different male-killing symbionts in its geographic range two of which coexist in the two locations from which A. decempunctata specimens were obtained for the present study. Since only a single male-killing taxon was found in A. decempunctata, we assume that the two closely related ladybird beetle species must differ in the number and/or geographic distribution of male killers. We discuss the importance of these findings to our understanding of the evolution and dynamics of symbiotic associations between male-killing bacteria and their insect hosts.  相似文献   

9.
Abstract:  The effects of sibling egg cannibalism on sex-dependent development and adult body weight were determined by rearing simultaneously two groups of sibling larvae of ladybirds, viz. Propylea dissecta and Coccinella transversalis individually. The first group included cannibals (i.e. neonates, which took a sibling egg as the first meal and later fed on aphids, Aphis craccivora ) and the other included non-cannibals (reared exclusively on aphids). The cannibal larvae developed faster with heavier adults than non-cannibals. This expedited development and nutritional advantage (increased body weight) was greater in first instars indicating maximum benefit of sibling cannibalism to them. Sibling cannibalism was relatively more advantageous to male than to female ladybirds. Laboratory data predict that the larger size of adults in the field could possibly be the result of sibling egg cannibalism at the neonate level.  相似文献   

10.
Male-killing bacteria are thought to persist in host populations by vertical transmission and conferring direct and/or indirect fitness benefits to their hosts. Here, we test the role of indirect fitness benefits accrued from resource reallocation in species that engage in sibling egg cannibalism. We found that a single-egg meal significantly increased larval survival in 12 ladybird species, but the value of an egg (to survival) differed substantially between species. Next, we tested the impact of three male-killing bacteria on larval survival in one ladybird species, Adalia bipunctata. Spiroplasma reduced larval survival, whereas Wolbachia and Rickettsia had no effect. However, Spiroplasma-infected larvae showed the greatest response to a single-egg meal. The indirect fitness benefit obtained from a single egg is thus so large that even male-killing bacteria with direct fitness costs can persist in host populations. This study supports the hypothesis that fitness compensation via resource reallocation can explain male-killing bacteria persistence.  相似文献   

11.

Background

Inherited bacteria that kill male offspring, male-killers, are known to be common in insects, but little is understood about the mechanisms used by male-killing bacteria to kill males. In this paper we describe the tempo and changes that occur during male-killing by Spiroplasma bacteria in the host Drosophila nebulosa.

Results

Spiroplasma infected D. nebulosa males were developmentally retarded from 6–8 h into embryonic development at 25°C, and arrested at between stages 12 and 13 of embryogenesis (10–12 h). Dying males were characterized by a failure to form segments, and ultimately disintegration of the normal oval embryonic shape. Prior to death, dying males exhibited widespread apoptosis, as testified by TUNEL staining.

Conclusion

The Spiroplasma kills male Drosophila in a narrow developmental period, shortly after the formation of the host dosage compensation complex that is required for male-killing. Male death is preceded by widespread apoptosis, but it is uncertain if this is primary or secondary apoptosis.  相似文献   

12.
Within the Diptera, two different selfish genetic elements are known to cause the production of female-biased sex ratios: maternally inherited bacteria that kill male zygotes (male-killers), and X chromosomes causing the degeneration of Y-bearing sperm in males (meiotic drive). We here develop a mathematical model for the dynamics of these two sex-ratio distorters where they co-occur. We show that X chromosome meiotic drive elements can be expected to substantially lower the equilibrium frequency of male-killers and can even lead to their extinction. Conversely, male-killers can also decrease the equilibrium frequency of X drivers and cause their extinction. Thus, we predict that there will be some complementarity in the incidence of X chromosome meiotic drive and male-killing in natural populations, with a lower than expected number of species bearing both elements.  相似文献   

13.
Laboratory study of cannibalism and interspecific predation in ladybirds   总被引:11,自引:1,他引:10  
Abstract.
  • 1 In the absence of aphids, adult females of Adalia bipunctata (L.) showed a greater reluctance to eat eggs than males.
  • 2 Eggs and young larvae were more vulnerable to cannibalism than older larvae and starved larvae were more vulnerable than well-fed larvae.
  • 3 Both egg and larval cannibalism is inversely related to the abundance of aphids.
  • 4 Eggs are a better food, in terms of larval growth and survival, than aphids.
  • 5 In the absence of aphids interspecific predation occurred, but not equally, between the coccinellids A.bipunctata, A.decempunctata (L.), Coccinella septempunctata L. and C.undecempunctata L.
  • 6 Larvae and adults of A. bipunctata and C.septempunctata were reluctant to eat conspecific eggs painted with a water extract of the other species' eggs and larvae of C. septempunctata were more likely to die after eating a few eggs of A.bipunctata than vice versa.
  • 7 These results indicate that cannibalism occurs mainly when aphid prey is scarce and is adaptive in that it improves the chances of survival, and coccinellids, to varying degrees, are defended against interspecific predation.
  相似文献   

14.
Abstract Most studies of insect reproductive allocation concentrate on propagule size and number and very few consider egg composition, which is likely to be equally important. In the present study, data are provided on changes in egg lipid, glycogen, free carbohydrate and protein during embryonic development of the aphidophagous ladybird Adalia bipunctata (L.) and the compositions of A. bipunctata, Adalia decempunctata and Anisosticta novemdecimpunctata eggs are compared. In A. bipunctata, egg mass, lipid and glycogen decline strongly during development and egg protein declines more weakly. Free carbohydrate declines early in egg development and increases at egg hatching. Lipid is energetically the most important developmental fuel, although approximately half of the initial egg lipid remains in the neonate larva. Across the three species, energy per unit egg mass is lowest in the least specialized species, A. bipunctata, which also has the largest eggs, and is highest in the most specialized, An. novemdecimpunctata, which has the smallest eggs. Two possible explanations for the observed pattern are discussed: (i) species laying smaller eggs may incur higher developmental costs per unit mass than species laying larger eggs and (ii) more specialized species, which reproduce at lower aphid densities, may provision neonate larvae better to facilitate location and capture of aphids.  相似文献   

15.
Cannibalism of eggs by larvae ofAdalia bipunctata, an aphidophagous species of ladybirds, is important for survival when aphids are scarce. Ladybirds survive longer by eating eggs of their own species rather than aphids. Since it costs less, in terms of larval growth, to eat eggs rather than aphids, cannibalism has a strong advantage under conditions of prey scarcity.  相似文献   

16.
The two-spot ladybird beetle Adalia bipunctata (Coleoptera: Coccinellidae) is host to four different intracellular maternally inherited bacteria that kill male hosts during embryogenesis: one each of the genus Rickettsia (alpha-Proteobacteria) and Spiroplasma (Mollicutes) and two distinct strains of Wolbachia (alpha-Proteobacteria). The history of infection with these male-killers was explored using host mitochondrial DNA, which is linked with the bacteria due to joint maternal inheritance. Two variable regions, 610 bp of cytochrome oxidase subunit I and 563 bp of NADH dehydrogenase subunit 5, were isolated from 52 A. bipunctata with known infection status and different geographic origin from across Eurasia. Two outgroup taxa were also considered. DNA sequence analysis revealed that the distribution of mitochondrial haplotypes is not associated with geography. Rather, it correlates with infection status, confirming linkage disequilibrium between mitochondria and bacteria. The data strongly suggest that the Rickettsia male-killer invaded the host earlier than the other taxa. Further, the male-killing Spiroplasma is indicated to have undergone a recent and extensive spread through host populations. In general, male-killing in A. bipunctata seems to represent a highly dynamic system, which should prove useful in future studies on the evolutionary dynamics of this peculiar type of symbiont-host association.  相似文献   

17.
Abstract:  The role of surface chemicals in egg cannibalism and intraguild predation by neonates of two aphidophagous ladybirds, Propylea dissecta and Coccinella transversalis were examined. Neonates of both species prefer to eat non-sibling conspecific eggs than heterospecific eggs, with higher preference in P. dissecta . Surface chemicals appear to play a major role for the preference of conspecific eggs, as the ladybird behaviour was reversed when these chemicals were interchanged. The surface chemicals present on the eggs possibly act as feeding stimulants to conspecific neonates but not for heterospecific neonates. Egg clustering enhances the effect of surface chemical and stimulate non-sibling egg cannibalism and appears to reduce intraguild predation. Egg clustering is advantageous to ladybirds, as it can stimulate non-sibling cannibalism by neonates. It appears that aggregation of chemicals present on the conspecific egg surface possibly attracts the hungry conspecific neonate, providing the first meal for its survival, while protecting against heterospecific predators. Neonates of both ladybirds were reluctant to eat heterospecific eggs.  相似文献   

18.
The coccinellid Harmonia axyridis (Pallas) has been used for augmentative and classical biological control in many environments. More recently it has invaded large parts of Europe and negative effects for native populations of aphidophagous coccinellids are beginning to emerge. Here we investigate intraguild predation (IGP) between H. axyridis and eleven native non-target European coccinellids, including less common species which have not been studied so far within this context of non-target effects. When first-instars of H. axyridis were paired with the native species, only Anatis ocellata (Linnaeus) and Calvia quatuordecimguttata (L.) were significantly superior to the former whereas H. axyridis was superior in three cases, i.e. against Aphidecta obliterata (L.), Coccinella septempunctata L. and Hippodamia variegata (Goeze). Non-significant results were obtained for all other pairings. Similar tests with the fourth larval instar revealed stronger IGP rates and H. axyridis was found to be superior in the interactions with Adalia bipunctata (L.), Adalia decempunctata (L.), A. obliterata, Calvia decemguttata (L.), C. quatuordecimguttata, C. septempunctata, H. variegata, Oenopia conglobata (L.) and Propylea quatuordecimpunctata (L.) whereas non-significant results were obtained for interactions with two other native species. Another experiment revealed that H. axyridis was able to prey more successfully upon egg of most native coccinellid species than vice versa. However, C. quatuordecimguttata eggs seem to be more protected against predation than those of the other species. Survival of first-instar H. axyridis was higher on conspecific eggs compared to eggs of any other species tested. Our results suggest that H. axyridis may become a threat to a wide range of native aphidophagous coccinellids sharing similar ecological niches except species showing high potential for chemical or physical protection.  相似文献   

19.
Male-killing bacteria are maternally inherited agents that cause death of sons of infected females. Their transmission rate is commonly high but imperfect and also sensitive to different environmental factors. Therefore, the proportion of infected females should be reduced in each generation. In order to explain male-killers spread and persistence in host population, a mechanism resulting in the relative increase of infected females must outweigh the losses caused by the imperfect transmission. The resource release hypothesis states that the males’ death results in increased resources available to sibling females which would otherwise be used by their male siblings. Infected females are then expected: to be larger than uninfected females in natural populations; or to have higher viability; or to have shorter development times; or any combination of these outcomes. Here, we tested the resource release hypothesis by measuring body size of infected and uninfected wild-caught Drosophila melanogaster females and carried out other fitness related measures in the laboratory. Wild-caught infected females produced more daughters than uninfected females in their first days in the laboratory. However, although no significant difference in viability was found in a controlled experiment with infected and uninfected flies from a standard laboratory strain, there was a decrease in development time probably mediated by reduced competition. Fitness effects conditioned by the host genetic background are pointed out as a possible explanation for this difference between wild and laboratory flies. Our findings are discussed in the context of the resource advantage hypothesis.  相似文献   

20.
Male-killing phenotypes are found in a variety of insects and are often associated with maternally inherited endosymbiotic bacteria. In several species of Drosophila, male-killing endosymbionts of the genus Spiroplasma have been found at low frequencies (0.1 to 3%). In this study, spiroplasma infection without causing male-killing was shown to be prevalent (23 to 66%) in Japanese populations of Drosophila hydei. Molecular phylogenetic analyses showed that D. hydei was infected with a single strain of spiroplasma, which was closely related to male-killing spiroplasmas from other Drosophila species. Artificial-transfer experiments suggested that the spiroplasma genotype rather than the host genotype was responsible for the absence of the male-killing phenotype. Infection densities of the spiroplasma in the natural host, D. hydei, and in the artificial host, Drosophila melanogaster, were significantly lower than those of the male-killing spiroplasma NSRO, which was in accordance with the hypothesis that a threshold infection density is needed for the spiroplasma-induced male-killing expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号