首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
The aim of our study was first to obtain a comprehensive profile of the brain antioxidant defense potential and peroxidative damage during aging. We investigated copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), seleno-dependent glutathione peroxidase (GSH-PX), glutathione reductase (GSSG-R) activities, endogenous and in vitro stimulated lipid peroxidation in 40 brains of control mice divided into 3 age groups: 2 months (young), 12 months (middle-aged) and 28 months (old). We found a positive correlation between age and activities of CuZnSOD (r = 0.47; P < 0.01) and GSH-PX (r = 0.72; P < 0.0001). CuZnSOD and GSH-PX activities are independently regulated during brain aging since temporal changes of these two enzymes do not correlate. No modification in MnSOD activity and basal lipid peroxidation was observed as a function of age. Nevertheless, stimulated lipid peroxidation was significantly higher at 12 months (6.53 +/- 0.71 mumole MDA/g tissue) than at 2 months (5.69 +/- 0.90) and significantly lower at 28 months (5.13 +/- 0.33) than at 12 months. Second, we used genetic manipulations to construct transgenic mice that specifically overexpress CuZnSOD to understand the role of CuZnSOD in neuronal aging. The human CuZnSOD transgene expression was stable during aging. The increased CuZnSOD activity in the brain (1.9-fold) of transgenic mice resulted in an enhanced rate of basal lipid peroxidation and in increased MnSOD activity in the 3 age groups. Other antioxidant enzymes did not exhibit modifications indicating the independence of the regulation between CuZnSOD and glutathione-related enzymes probably due to their different cellular localization in the brain.  相似文献   

2.
3.
Dietary fat-type and copper (Cu) deficiency have been independently identified as potentially important factors in the etiology of ischemic heart disease (IHD); a disease that has been linked to inflammation and oxygen free radical (OFR) mediated damage. Group (n = 6) of male, weanling, Wistar rats were provided ad libitum with deionized water and control or low Cu diets containing (200 g/kg) either saturated or polyunsaturated fatty acids (SFA or PUFA, respectively) for 56 d. Measurement of several indices of Cu status indicated that both groups fed the low Cu diets were Cu-deficient. SFA consumption resulted in significantly increased hepatic Cu (p less than 0.001) and iron (Fe) (p less than 0.001) concentrations and xanthine oxidase activity (p less than 0.05) and significantly decreased hepatic glucose-6-phosphate dehydrogenase activity (p less than 0.001). Although Cu deficiency resulted in significantly decreased hepatic copper-zinc superoxide dismutase (CuZnSOD) activity (p less than 0.01), no significant effect on the activities of the other hepatic antioxidant enzymes, manganese superoxide dismutase, catalase, and glutathione peroxidase, or glutathione reductase, were observed. Cu deficiency also resulted in significantly decreased hepatic Cu levels (p less than 0.001) and cytochrome c oxidase activity (p less than 0.01). No significant difference in hepatic thiobarbituric acid reactive substances (TBARS), a measure of lipid peroxidation, was found between groups consuming SFA or PUFA, but both Cu-deficient groups exhibited significantly increased hepatic TBARS (p less than 0.001), compared to controls. This was probably owing to the significantly decreased hepatic CuZnSOD activity observed in the Cu-deficient, compared to control animals.  相似文献   

4.
Zinc deficiency induces oxidative stress and AP-1 activation in 3T3 cells   总被引:6,自引:0,他引:6  
It has been postulated that one mechanism underlying zinc deficiency-induced tissue alterations is excessive cellular oxidative damage. In the present study we investigated if zinc deficiency can induce oxidative stress in 3T3 cells and trigger select intracellular responses that have been associated to oxidative stress. Cells were exposed to control media or to chelated media containing 0.5, 5, or 50 microM zinc for 24 or 48 h. The oxidative status of the cells was evaluated as an increase in the fluorescence of the probe 5(or 6)-carboxy-2'7'-dichlorodihydrofluorescein diacetate (DCDCDHF). After 24 and 48 h of exposure, the fluorescence intensity was significantly higher (4- to 15-fold) in the 0.5 and 5 microM Zn groups compared to the 50 microM Zn and control groups. The activity of the antioxidant enzymes CuZn (CuZnSOD) and Mn (MnSOD) superoxide dismutases was significantly higher in the 0.5 and 5 microM Zn cells compared to the 50 microM Zn and control groups at both the 24 and 48 h time points. These higher activities were associated with higher levels of MnSOD mRNA. After 24 h in culture, the level of activated AP-1 was markedly higher in the 0.5 and 5 microM Zn cells than in the control (72 and 58%, respectively) and 50 microM Zn cells (73 and 60%, respectively). NF-kappaB binding activity was lower in the 0.5 and 5 microM Zn cells than in controls. Thus, oxidative stress is induced by zinc deficiency in 3T3 cells. This oxidative stress results in an upregulation of oxidant defense mechanisms.  相似文献   

5.
The purpose of this study was to evaluate the effects of cadmium-induced peroxidative damage to rat liver, heart, and spleen. Sprague-Dawley rats were injected subcutaneously with a single dose of 25, 125, 500, or 1250 μg Cd/kg and evaluated 6, 12, 24, or 72 h later. Liver, heart, and spleen were analyzed for lipid peroxidation and Fe, Cu, Zn, Se, and Cd concentrations. Data showed that Cd produced enhanced lipid peroxidation in the liver, heart, and spleen. These Cd-induced changes were accompanied by a significant rise in liver, heart, and spleen Fe and Cu, and a fall in spleen Zn and liver, heart, and spleen Se. Concurrent treatment with Se and Cd reduced the Cd-induced alterations in liver, heart, and spleen peroxidation and essential metal levels. Data suggest that lipid peroxidation is associated with cadmium toxicity and that Se was found effective in preventing lipid peroxidation.  相似文献   

6.
超氧化物歧化酶(SOD,EC 1.15.1.1),己经在多种组织中发现,它能将O2.-催化生成H2O2及O2.迄今为止,已经从哺乳动物体内分离出三种SOD:CuZnSOD(SOD1)、MnSOD(SOD2)TLEC-SOD(胞外超氧化物歧化酶,SOD3),各自具有不同的生化及分子特性.CuZnSOD(SOD1),是一类含有Cu及Zn原子的二聚体,存在于特定细胞的基质内,约占SOD总量的90%.在胞质及周质中,SOD以二聚体形式存在,而在线粒体及质外,则以四聚体形式存在.在保护脑、肺及其它组织的氧化应激中,CuZnSOD被认为起着保护作用.运动神经元肌萎缩侧索硬化症(ALS),据称也与同源二聚体CuZnSOD的错误折叠有关,己经报导,有多个CuZnSOD基因位点突变与ALS有关.本文将从基因的结构、表达、调节及蛋白的结构与功能等方面,对CuZnSOD进行简要论述.  相似文献   

7.
Astrocytes (AC) induce blood-brain barrier (BBB) properties in brain endothelial cells (EC). As antioxidative activity (AOA) is assumed to be a BBB characteristic, we tested whether AC improve AOA of EC. Monocultivated AC showed higher AOA [manganese superoxide dismutase (SOD), catalase (Cat), glutathione peroxidase (GPx)] than EC. Cocultivation elevated AOA in EC (MnSOD, CuZnSOD, Cat, GPx), and AC (MnSOD, CuZnSOD, GPx). Hypoxia increased radical-induced membrane lipid peroxidation in monocultivated, but not in cocultivated EC. Thus, EC/AC cocultivation intensifies AOA in both cell types, protects the EC, and therefore, the BBB against oxidative stress. The high AOA is regarded as an essential property of the BBB, which is induced by AC.  相似文献   

8.
Prolonged exposure to supraphysiological oxygen concentrations results in the generation of reactive oxygen species, which can cause significant lung injury in critically ill patients. Supplementation with human recombinant antioxidant enzymes (AOE) may mitigate hyperoxic lung injury, but it is unclear which combination and concentration will optimally protect pulmonary epithelial cells. First, stable cell lines were generated in alveolar epithelial cells (MLE12) overexpressing one or more of the following AOE: Mn superoxide dismutase (MnSOD), CuZnSOD, or glutathione peroxidase 1. Next, A549 cells were transduced with 50-300 particles/cell of recombinant adenovirus containing either LacZ or each of the three AOE (alone or in combination). Cells were then exposed to 95% O(2) for up to 3 days, with cell number and viability determined daily. Overexpression of either MnSOD (primarily mitochondrial) or CuZnSOD (primarily cytosolic) reversed the growth inhibitory effects of hyperoxia within the first 48 h of exposure, resulting in a significant increase in viable cells (P < 0.05), with 1.5- to 3-fold increases in activity providing optimal protection. Protection from mitochondrial oxidation was confirmed by assessing aconitase activity, which was significantly improved in cells overexpressing MnSOD (P < 0.05). Data indicate that optimal protection from hyperoxic injury occurs in cells coexpressing MnSOD and glutathione peroxidase 1, with prevention of mitochondrial oxidation being a critical factor. This has important implications for clinical trials in preterm infants receiving SOD supplementation to prevent acute and chronic lung injury.  相似文献   

9.
The protective role of superoxide dismutases (SODs) against ionizing radiation, which generates reactive oxygen species (ROS) harmful to cellular function, was investigated in the wild-type and in mutant yeast strains lacking cytosolic CuZnSOD (sod1Delta), mitochondrial MnSOD (sod2Delta), or both SODs (sod1Deltasod2Delta). Upon exposure to ionizing radiation, there was a distinct difference between these strains in regard to viability and the level of protein carbonyl content, which is the indicative marker of oxidative damage to protein, intracellular H2O2 level, as well as lipid peroxidation. When the oxidation of 2',7'-dichlorofluorescin was used to examine the hydroperoxide production in yeast cells, the SOD mutants showed a higher degree of increase in fluorescence upon exposure to ionizing radiation as compared to wild-type cells. These results indicated that mutants deleted for SOD genes were more sensitive to ionizing radiation than isogenic wild-type cells. Induction and inactivation of other antioxidant enzymes, such as catalase, glucose 6-phosphate dehydrogenase, and glutathione reductase, were observed after their exposure to ionizing radiation both in wild-type and in mutant cells. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than did mutant cells. These results suggest that both CuZnSOD and MnSOD may play a central role in protecting cells against ionizing radiation through the removal of ROS, as well as in the protection of antioxidant enzymes.  相似文献   

10.
Airway epithelial cells (AEC) contain both pro- and anti-apoptotic factors but little is known about mechanisms regulating apoptosis of these cells. In this study we have examined the localization of pro-caspase-3 and Zn(2+), a cellular regulator of pro-caspase-3, in primary sheep and human AEC. Zn(2+) was concentrated in both cytoplasmic vesicles and ciliary basal bodies, in the vicinity of both pro-caspase-3 and the antioxidant Cu/Zn superoxide dismutase (Cu/Zn SOD). Depletion of intracellular Zn(2+) in sheep AEC, using the membrane permeant Zn(2+) chelator TPEN, increased lipid peroxidation in the apical cell membranes (as assessed by immunofluorescence with anti-hydroxynonenal) as well as increasing activated pro-caspase-3 and apoptosis. There were smaller increases in caspase-2 and -6 but not other caspases. Activation of caspase-3 in TPEN-treated AEC was inhibited strongly by N-acetylcysteine and partially by vitamin C and vitamin E. These findings suggest that cytoplasmic pro-caspase-3 is positioned near the lumenal surface of AEC where it is under the influence of Zn(2+) and other anti-oxidants.  相似文献   

11.
12.
Tripathi BN  Gaur JP 《Planta》2004,219(3):397-404
A 4-h exposure of Scenedesmus sp. to Cu or Zn enhanced intracellular levels of both test metals and proline. The level of intracellular proline increased markedly up to 10 µM Cu, but higher concentrations were inhibitory. However, intracellular proline consistently increased with increasing concentration of Zn in the medium. Cu and Zn induced oxidative stress in the test alga by increasing lipid peroxidation and membrane permeability, and by reducing SH content. Pretreatment of the test alga with 1 mM proline for 30 min completely alleviated Cu-induced lipid peroxidation, minimized K+ efflux and also reduced depletion of the SH pool. But proline pretreatment could only slightly reduce Zn-induced oxidative stress. Interestingly, proline pretreatment increased the level of Cu (25–54%) and Zn (19–49%) inside the cells. It did not affect the activities of superoxide dismutase, ascorbate peroxidase or catalase, but improved glutathione reductase activity under Cu and Zn stress. A comparison of the effects of proline pretreatment on lipid peroxidation by Cu, Zn, methyl viologen and ultraviolet-B radiation suggests that proline protects cells from metal-induced oxidative stress by scavenging reactive oxygen species rather than by chelating metal ions. Pretreatment of cells with a known antioxidant (ascorbate) and a hydroxyl radical scavenger (sodium benzoate) considerably reduced metal-induced lipid peroxidation and proline accumulation. However, sodium benzoate had a very mild effect on Zn-induced lipid peroxidation and proline accumulation. The present study demonstrates that proline possibly acts by detoxifying reactive oxygen species, mainly hydroxyl radicals, rather than by improving the antioxidant defense system under metal stress.Abbreviations APOX Ascorbate peroxidase - CAT Catalase - GR Glutathione reductase - MDA Malondialdehyde - MV Methyl viologen - ROS Reactive oxygen species - SH Sulphydryl - SOD Superoxide dismutase - UV-B Ultraviolet-B radiation  相似文献   

13.
The processes of lipid peroxidation have been studied in bovine adrenal cortex in vitro. The lipid peroxidation rate in this tissue is shown to be dependent on the content of metal ions. EDTA, deferroxamine and penicyllamine inhibit spontaneous lipid peroxidation by 25, 50 and 42%, respectively. The ability to activate the process permits arranging metal ions in the following sequence: Fe2+ greater than Fe3+ greater than Cu2+ greater than Mg2+ greater than Mn2+. The maximum activation of lipid peroxidation is observed at Fe2+ and Fe3+ concentrations within the range of 5 x 10(-6) x 10(-4) M.  相似文献   

14.
In this report, we have investigated the role of copper (Cu) and zinc (Zn) in oxidative stress induced by cadmium (Cd) in C6 cells. Cells were exposed to 20 μM Cd, 500 μM Cu, and 450 μM Zn for 24 h. Then, toxic effects, cellular metals levels, oxidative stress parameters, cell death, as well as DNA damage were evaluated. Cd induced an increase in cellular Cd, Cu, and Zn levels. This results not only in the inhibition of GSH-Px, GRase, CAT, and SOD activities but also in ROS overproduction, oxidative damage, and apoptotic cell death not related to Cu and Zn mechanisms. The thiol groups and GSH levels decreased, whereas the lipid peroxidation and DNA damage increased. The toxicity of Zn results from the imbalance between the inhibition of antioxidant activities and the induction of MT synthesis. The increase in Cu and Zn levels could be explained by the disruption of specific transporter activities, Cd interference with signaling pathways, and metal displacement. Our results suggest that the alteration of Cu and Zn homeostasis is involved in the oxidative stress induced by Cd.  相似文献   

15.
Lemna minor L. treated with 20, 50, or 100 μM CuSO4 accumulated Cu and reactive oxygen species (hydrogen peroxide and superoxide radical) in frond and root cells. The time-course analysis of lipid peroxidation showed high increment in malondialdehyde production only after 12 and 48 h of Cu treatment. Guaiacol peroxidase and superoxide dismutase activities decreased after 48 h while glutathione reductase activity enhanced 48 h after Cu-treatment. Ascorbate and glutathione contents increased with the increasing Cu stress.  相似文献   

16.
There are two types of intracellular superoxide dismutases: the mitochondrial manganese SOD (MnSOD) and the cytoplasmic copper/zinc SOD (CuZnSOD). Mutant mice that lack MnSOD die shortly after birth because of cardiomyopathy and mitochondrial injury. In order to verify if CuZnSOD could compensate for MnSOD deficiency, a new mutant mouse that overexpresses CuZnSOD but is deficient in MnSOD was generated by crossing MnSOD knockout mice with CuZnSOD transgenic mice. CuZnSOD activity was significantly increased in the blood, brain, liver, and heart of MnSOD knockout, CuZnSOD transgenic mice when compared with nontransgenic mice. However, overexpression of CuZnSOD did not prevent neonatal lethality in mice that lack MnSOD, nor did it prevent oxidative aconitase inactivation, nor did it rescue MnSOD-deficient astrocytes in culture. Based on our findings, which emphasize the strong enzymatic compartmentalization of CuZnSOD and MnSOD, therapeutic antioxidant strategies should consider the final intracellular localization of the antioxidant used, especially when those strategies are directed against mitochondrial diseases.  相似文献   

17.
We have previously shown that human recombinant methionyl manganese superoxide dismutase (MnSOD) is more efficient than CuZnSOD as an anti-inflammatory agent in a model of acute inflammation (Carrageenan-induced pau edema). This effect was attributed to the prolonged half-life of MnSOD in blood (t1/2 = 6 h vs. 10 min. respectively). In the present study, the two enzymes were compared in terms of their effectiveness in two systems: (I) Adjuvant-induced arthritis in rats, which is considered to be a model for the chronic situation of rheumatoid arthritis and (2) Bleomycin-induced lung fibrosis. which is a chronic situation believed to be mediated by oxygen free radicals.

Rats inflicted with adjuvant arthritis were treated during the period of maximal joint swelling (Days 15-21 after adjuvant injection) with MnSOD or CuZnSOD (12 to 50mg/kg, i.p. daily). MnSOD administration resulted in a 50-75% reduction of paw swelling, as well as inhibition of the elevation of serum globulins. A similar treatment with CuZnSOD gave merely marginal effects.

In the second system, lung fibrosis was induced in rats by intratracheal administration of bleomycin. MnSOD (50mg/kg, s.c.), administered 2 h before and then 2 and 4 days after bleomycin, markedly inhibited lung fibrosis, as evident from lung weight and collagen content measured by the 3rd week. By contrast, CuZnSOD administration did not give a significant effect. The results indicate that MnSOD is superior to CuZnSOD in the treatment of chronic inflammatory processes. In addition, they lend further support to the involvement of oxygen free radicals in bleomycin toxicity.  相似文献   

18.
19.
To investigate the antioxidative response of glutathione metabolism in Urtica dioica L. to a cadmium induced oxidative stress, activities of glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GSH-Px), content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation (LPO), and also accumulation of Fe, Zn, Mn, Cu besides Cd were determined in the roots, stems, and leaves of plants exposed to 0 (control), 0.045, and 0.09 mM CdCl2 for 58 h. Whereas the Cd content continuously increased in all organs, the Fe, Zn, Mn, and Cu content decreased in dependence on the applied Cd concentration and incubation time. The Cd treatment resulted in increased GR and GST activities in all organs, however, GSH-Px activity was dependent on Cd concentration and plant organ. The GSH/GSSG ratio maintained above the control level in the stems at both Cd concentrations. The LPO was generally close to the control values in the roots and stems but it increased in the leaves especially at 0.09 mM Cd.  相似文献   

20.
The relationship between Ni-induced hepatic lipid peroxidation (LPO) and the concentrations of Ni and trace elements was investigated in male ICR mice. The protective effects of antioxidants were also examined. Hepatic LPO and the concentrations of Ni, Fe, Cu, and Zn in the liver were enhanced after an ip injection of nickel chloride (NiCl2). Dose-response studies were conducted on male mice with different groups being injected with 50, 85, and 170 μmol Ni/kg. LPO increased significantly in a dose-dependent manner. In time-course studies, mice were administrated NiCl2 (170 μmol Ni/kg) and killed at intervals of 6, 12, 24, and 48 h after injection. Both LPO and the accumulation of Ni, Fe, Cu, and Zn in the liver showed a significantly positive time-course relationship after NiCl2 injection. At 1 h and 24 h after a single ip injection of 170 μmol Ni/kg, the mice were given an ip injection of ascorbic acid (vit C), glutathione (GSH), and selenium (Se). Vit C and GSH significantly decreased both the level of hepatic LPO and the concentration of Ni in the liver, but did not decrease the accumulation of Fe, Cu, and Zn. However, LPO in the experimental group of mice was different significantly from that in the control group. In conclusion, the results suggest that Ni-induced hepatic LPO may result from increasing the amounts of Ni, Fe, and Cu, since these elements are involved in the generation of hydroxyl radical by inducing the Fenton reaction, thus instigating the Ni-mediated hepatic LPO. The protective effects of vit C and GSH in hepatic LPO result not only from removing the oxygen reactive species, but also from decreasing the Ni concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号