首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Steroid hormones are believed to play an important role in prostate carcinogenesis, but epidemiological evidence linking prostate cancer and steroid hormone genes has been inconclusive, in part due to small sample sizes or incomplete characterization of genetic variation at the locus of interest. Here we report on the results of a comprehensive study of the association between HSD17B1 and prostate cancer by the Breast and Prostate Cancer Cohort Consortium, a large collaborative study. HSD17B1 encodes 17β-hydroxysteroid dehydrogenase 1, an enzyme that converts dihydroepiandrosterone to the testosterone precursor Δ5-androsterone-3β,17β-diol and converts estrone to estradiol. The Breast and Prostate Cancer Cohort Consortium researchers systematically characterized variation in HSD17B1 by targeted resequencing and dense genotyping; selected haplotype-tagging single nucleotide polymorphisms (htSNPs) that efficiently predict common variants in U.S. and European whites, Latinos, Japanese Americans, and Native Hawaiians; and genotyped these htSNPs in 8,290 prostate cancer cases and 9,367 study-, age-, and ethnicity-matched controls. We found no evidence that HSD17B1 htSNPs (including the nonsynonymous coding SNP S312G) or htSNP haplotypes were associated with risk of prostate cancer or tumor stage in the pooled multiethnic sample or in U.S. and European whites. Analyses stratified by age, body mass index, and family history of disease found no subgroup-specific associations between these HSD17B1 htSNPs and prostate cancer. We found significant evidence of heterogeneity in associations between HSD17B1 haplotypes and prostate cancer across ethnicity: one haplotype had a significant (p < 0.002) inverse association with risk of prostate cancer in Latinos and Japanese Americans but showed no evidence of association in African Americans, Native Hawaiians, or whites. However, the smaller numbers of Latinos and Japanese Americans in this study makes these subgroup analyses less reliable. These results suggest that the germline variants in HSD17B1 characterized by these htSNPs do not substantially influence the risk of prostate cancer in U.S. and European whites.  相似文献   

3.
Genetics of the P2X7 receptor and human disease   总被引:1,自引:0,他引:1       下载免费PDF全文
The P2RX7 gene is highly polymorphic, and many single nucleotide polymorphisms (SNPs) underlie the wide variation observed in P2X7 receptor responses. We review the discovery of those non-synonymous SNPs that affect receptor function and compare their frequencies in different ethnic populations. Analysis of pairwise linkage disequilibrium (LD) predicts a limited range of haplotypes. The strong LD between certain functional SNPs provides insight into published studies of the association between SNPs and human disease.  相似文献   

4.
Endometriosis is determined by genetic factors, and the prevalence of genetic polymorphisms varies greatly depending on the ethnic group studied. The objective of this study was to investigate the relationship between single nucleotide polymorphisms (SNPs) of 9 genes involved in estrogen biosynthesis and metabolism and the risks of endometriosis. Three hundred patients with endometriosis and 337 non-endometriotic controls were recruited. Thirty four non-synonymous SNPs, which change amino acid residues, were analyzed using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). The functions of SNP-resulted amino acid changes were analyzed using multiple web-accessible databases and phosphorylation predicting algorithms. Among the 34 NCBI-listed SNPs, 22 did not exhibit polymorphism in this study of more than 600 Taiwanese Chinese women. However, homozygous and heterozygous mutants of 4 SNPs - rs6165 (genotype GG+GA, 307Ala/Ala+307Ala/Thr) of FSHR, rs 6166 (genotype GG+GA, 680Ser/Asn+680Ser/Ser) of FSHR, rs2066479 (genotype AA+AG, 289Ser/Ser+289Ser/Gly) of HSD17B3 and rs700519 (genotype TT+TC, 264Cys/Cys+264Cys/Arg) of CYP19, alone or in combination, were significantly associated with decreased risks of endometriosis. Bioinformatics results identified 307Thr of FSHR to be a site for O-linked glycosylation, 680Ser of FSHR a phosphorylated site by protein kinase B, and 289Ser of HSD17B3 a phosphorylated site by protein kinase B or ribosomal protein S6 kinase 1. Results of this study suggest that non-synonymous polymorphisms of FSHR, HSD17B3 and CYP19 genes may modulate the risk of endometriosis in Taiwanese Chinese women. Identification of the endometrosis-preferential non-synonymous SNPs and the conformational changes in those proteins may pave the way for the development of more disease-specific drugs.  相似文献   

5.
Beta-defensins are cationic antimicrobial peptides expressed by epithelial cells and exhibit antibacterial, antifungal, and antiviral properties. The defensins are part of the innate host defense network and may have a significant protective role in the oral cavity and other mucosa. Defects or alteration in expression of the beta-defensins may be associated with susceptibility to infection and mucosal disorders. We examined the occurrence of single-nucleotide polymorphisms (SNPs) in the human beta-defensin genes DEFB1 and DEFB2 encoding human beta-defensin-1 and -2 (hBD-1, hBD-2), respectively, in five ethnic populations and defined haplotypes in these populations. Fifteen SNPs were identified in both DEFB1 and DEFB2. Coding region SNPs were found in very low frequency in both genes. One nonsynonymous DEFB1 SNP, G1654A (Val --> Ile), and one nonsynonymous DEFB2 SNP, T2312A (Leu --> His), were identified. Seven sites in each gene exhibited statistically significant differences in frequency between ethnic groups, with the greatest variation in the promoter and in the 5'-untranslated region of DEFB1. DEFB1 displayed 10 common haplotypes, including one cosmopolitan haplotype. Eight common haplotypes were found in DEFB2, including one cosmopolitan haplotype shared among all five ethnic groups. Our results show that genotypic variability among ethnic groups will need to be addressed when performing associative genetic studies of innate defense mechanisms and susceptibility to disease.  相似文献   

6.
Although the function of the OCA2 gene product has not been totally clarified, variation in OCA2 has been associated with skin and hair pigmentation in human and mouse. However, its contribution to skin colour in domestic species has not been reported. In this study, cDNA and intron 9 sequences of the porcine OCA2 gene have been characterized in several pig populations. The cDNA sequence alignment of 20 animals from eight porcine populations allowed the identification of 10 single nucleotide polymorphisms (SNPs); five of the 10 SNPs were non-synonymous. The intron 9 sequence alignment of 12 animals belonging to four pig populations revealed four additional SNPs. Skin colour variation was analysed in a red strain of Iberian pigs with segregation of three SNPs forming two OCA2 intragenic haplotypes. Results from this study provide evidence of a suggestive dominant effect of haplotypes on colour intensity and indicate an important contribution of additive polygenic effects (h2 = 0.56 +/- 0.21) to the variance of this trait.  相似文献   

7.
8.
The major histocompatibility complex (MHC) is recognised as one of the most important genetic regions in relation to common human disease. Advancement in identification of MHC genes that confer susceptibility to disease requires greater knowledge of sequence variation across the complex. Highly duplicated and polymorphic regions of the human genome such as the MHC are, however, somewhat refractory to some whole-genome analysis methods. To address this issue, we are employing a bacterial artificial chromosome (BAC) cloning strategy to sequence entire MHC haplotypes from consanguineous cell lines as part of the MHC Haplotype Project. Here we present 4.25 Mb of the human haplotype QBL (HLA-A26-B18-Cw5-DR3-DQ2) and compare it with the MHC reference haplotype and with a second haplotype, COX (HLA-A1-B8-Cw7-DR3-DQ2), that shares the same HLA-DRB1, -DQA1, and -DQB1 alleles. We have defined the complete gene, splice variant, and sequence variation contents of all three haplotypes, comprising over 259 annotated loci and over 20,000 single nucleotide polymorphisms (SNPs). Certain coding sequences vary significantly between different haplotypes, making them candidates for functional and disease-association studies. Analysis of the two DR3 haplotypes allowed delineation of the shared sequence between two HLA class II-related haplotypes differing in disease associations and the identification of at least one of the sites that mediated the original recombination event. The levels of variation across the MHC were similar to those seen for other HLA-disparate haplotypes, except for a 158-kb segment that contained the HLA-DRB1, -DQA1, and -DQB1 genes and showed very limited polymorphism compatible with identity-by-descent and relatively recent common ancestry (<3,400 generations). These results indicate that the differential disease associations of these two DR3 haplotypes are due to sequence variation outside this central 158-kb segment, and that shuffling of ancestral blocks via recombination is a potential mechanism whereby certain DR-DQ allelic combinations, which presumably have favoured immunological functions, can spread across haplotypes and populations.  相似文献   

9.
Serine hydroxymethyltransferase (SHMT) catalyzes the transfer of a β-carbon from serine to tetrahydrofolate to form glycine and 5,10-methylene-tetrahydrofolate. This reaction plays an important role in neurotransmitter synthesis and metabolism. We set out to resequence SHMT1 and SHMT2, followed by functional genomic studies. We identified 87 and 60 polymorphisms in SHMT1 and SHMT2, respectively. We observed no significant functional effect of the 13 non-synonymous single-nucleotide polymorphism (SNPs) in these genes, either on catalytic activity or protein quantity. We imputed additional variants across the two genes using '1000 Genomes' data, and identified 14 variants that were significantly associated (p<1.0E-10) with SHMT1 messenger RNA expression in lymphoblastoid cell lines. Many of these SNPs were also significantly correlated with basal SHMT1 protein expression in 268 human liver biopsy samples. Reporter gene assays suggested that the SHMT1 promoter SNP, rs669340, contributed to this variation. Finally, SHMT1 and SHMT2 expression were significantly correlated with those of other Folate and Methionine Cycle genes at both the messenger RNA and protein levels. These experiments represent a comprehensive study of SHMT1 and SHMT2 gene sequence variation and its functional implications. In addition, we obtained preliminary indications that these genes may be co-regulated with other Folate and Methionine Cycle genes.  相似文献   

10.
As the largest set of sequence variants, single-nucleotide polymorphisms (SNPs) constitute powerful assets for mapping genes and mutations related to common diseases and for pharmacogenetic studies. A major goal in human genetics is to establish a high-density map of the genome containing several hundred thousand SNPs. Here we assayed 3.7 Mb (154,397 bp in 24 alleles) of chromosome 14 expressed sequence tags (ESTs) and sequence-tagged sites, for sequence variation in DNA samples from 12 African individuals. We identified and mapped 480 biallelic markers (459 SNPs and 21 small insertions and deletions), equally distributed between EST and non-EST classes. Extensive research in public databases also yielded 604 chromosome 14 SNPs (dbSNPs), 520 of which could be mapped and 19 of which are common between CNG (i.e., identified at the Centre National de Génotypage) and dbSNP polymorphisms. We present a dense map of SNP variation of human chromosome 14 based on 981 nonredundant biallelic markers present among 1345 radiation hybrid mapped sequence objects. Next, bioinformatic tools allowed 945 significant sequence alignments to chromosome 14 contigs, giving the precise chromosome sequence position for 70% of the mapped sequences and SNPs. In addition, these tools also permitted the identification and mapping of 273 SNPs in 159 known genes. The availability of this SNP map will permit a wide range of genetic studies on a complete chromosome. The recognition of 45 genes with multiple SNPs, by allowing the construction of haplotypes, should facilitate pharmacogenetic studies in the corresponding regions.  相似文献   

11.
Determining variation in genes is fundamental to understanding their function in the disease state. Cardiac troponin T (cTnT) and phospholamban (PLN) genes have been implicated in dilated cardiomyopathy (DCM) in human and model species. To investigate the role of these 2 candidate genes in DCM in the turkey Meleagris gallopavo, understanding sequence variants and map position distribution is necessary. To this end, a total of 1854 and 1771 bp of cTnT and PLN gene sequences, respectively, were scanned for single nucleotide polymorphisms (SNPs) in a randomly bred population. A total of 15 SNPs was identified in the cTnT and PLN genomic sequences. Nine haplotypes, 5 in cTnT and 4 in PLN, were identified. Observed heterozygosities (0.02-0.39) in the turkey population were low for both genes. Within each gene, 1 SNP corresponding to a restriction enzyme site was identified and used to develop a PCR-restriction fragment length polymorphism (RFLP) genotyping assay. The PLN gene was genetically mapped to turkey chromosome 2, equivalent to Gallus gallus chromosome 3, and cTnT mapped to a turkey microchromosome. Although limited because of the relatively small sample size of 55 birds, the data from this SNP analysis of PLN and cTnT provide a foundation from which to evaluate the function of cTnT and PLN in the turkey. Information about the distribution of the SNPs and haplotypes will facilitate future association and linkage studies.  相似文献   

12.
The objectives of this study were to identify single nucleotide polymorphisms (SNPs) and resulting haplotypes in the bovine CXCR2 gene. A 311-bp segment of the bovine CXCR2 gene was amplified and sequenced. Five SNPs at positions 612, 684, 777, 858, and 861 were expressed in both Holstein and Jersey dairy cattle. Four SNPs resulted in synonymous substitutions, while a non-synonymous switch at position 777 (GC) resulted in a glutamine to histidine substitution at amino acid residue 245. Strong linkage disequilibrium was exhibited for both breeds among all five loci (P<0.001). Both allele and genotype frequencies differed significantly with respect to breed at four of the five loci (P<0.001). The five polymorphisms generated ten distinct haplotypes. Six haplotypes were common between the two breeds, while Holsteins and Jerseys each uniquely expressed two haplotypes. Of the six common haplotypes, two represented 83% of the Jersey population; whereas four of these haplotypes represented 95% of the Holstein population.  相似文献   

13.
Sequences associated with human iris pigmentation   总被引:7,自引:0,他引:7  
To determine whether and how common polymorphisms are associated with natural distributions of iris colors, we surveyed 851 individuals of mainly European descent at 335 SNP loci in 13 pigmentation genes and 419 other SNPs distributed throughout the genome and known or thought to be informative for certain elements of population structure. We identified numerous SNPs, haplotypes, and diplotypes (diploid pairs of haplotypes) within the OCA2, MYO5A, TYRP1, AIM, DCT, and TYR genes and the CYP1A2-15q22-ter, CYP1B1-2p21, CYP2C8-10q23, CYP2C9-10q24, and MAOA-Xp11.4 regions as significantly associated with iris colors. Half of the associated SNPs were located on chromosome 15, which corresponds with results that others have previously obtained from linkage analysis. We identified 5 additional genes (ASIP, MC1R, POMC, and SILV) and one additional region (GSTT2-22q11.23) with haplotype and/or diplotypes, but not individual SNP alleles associated with iris colors. For most of the genes, multilocus gene-wise genotype sequences were more strongly associated with iris colors than were haplotypes or SNP alleles. Diplotypes for these genes explain 15% of iris color variation. Apart from representing the first comprehensive candidate gene study for variable iris pigmentation and constituting a first step toward developing a classification model for the inference of iris color from DNA, our results suggest that cryptic population structure might serve as a leverage tool for complex trait gene mapping if genomes are screened with the appropriate ancestry informative markers.  相似文献   

14.
15.
We have performed a comprehensive evaluation of single-nucleotide polymorphisms (SNPs) and haplotypes in the human TAS1R gene family, which encodes receptors for sweet and umami tastes. Complete DNA sequences of TAS1R1-, TAS1R2-, and TAS1R3-coding regions, obtained from 88 individuals of African, Asian, European, and Native American origin, revealed substantial coding and noncoding diversity: polymorphisms are common in these genes, and polymorphic sites and SNP frequencies vary widely in human populations. The genes TAS1R1 and TAS1R3, which encode proteins that act as a dimer to form the umami (glutamate) taste receptor, showed less variation than the TAS1R2 gene, which acts as a dimer with TAS1R3 to form the sweet taste receptor. The TAS1R3 gene, which encodes a subunit common to both the sweet and umami receptors, was the most conserved. Evolutionary genetic analysis indicates that these variants have come to their current frequencies under natural selection during population growth and support the view that the coding sequence variants affect receptor function. We propose that human populations likely vary little with respect to umami perception, which is controlled by one major form of the receptor that is optimized for detecting glutamate but may vary much more with respect to sweet perception.  相似文献   

16.
Inflammatory bowel disease (IBD) is considered to be the most common cause of vomiting and diarrhoea in dogs, and the German shepherd dog (GSD) is particularly susceptible. The exact aetiology of IBD is unknown, however associations have been identified between specific single-nucleotide polymorphisms (SNPs) in Toll-like receptors (TLRs) and human IBD. However, to date, no genetic studies have been undertaken in canine IBD. The aim of this study was to investigate whether polymorphisms in canine TLR 2, 4 and 5 genes are associated with IBD in GSDs. Mutational analysis of TLR2, TLR4 and TLR5 was performed in 10 unrelated GSDs with IBD. Four non-synonymous SNPs (T23C, G1039A, A1571T and G1807A) were identified in the TLR4 gene, and three non-synonymous SNPs (G22A, C100T and T1844C) were identified in the TLR5 gene. The non-synonymous SNPs identified in TLR4 and TLR5 were evaluated further in a case-control study using a SNaPSHOT multiplex reaction. Sequencing information from 55 unrelated GSDs with IBD were compared to a control group consisting of 61 unrelated GSDs. The G22A SNP in TLR5 was significantly associated with IBD in GSDs, whereas the remaining two SNPs were found to be significantly protective for IBD. Furthermore, the two SNPs in TLR4 (A1571T and G1807A) were in complete linkage disequilibrium, and were also significantly associated with IBD. The TLR5 risk haplotype (ACC) without the two associated TLR4 SNP alleles was significantly associated with IBD, however the presence of the two TLR4 SNP risk alleles without the TLR5 risk haplotype was not statistically associated with IBD. Our study suggests that the three TLR5 SNPs and two TLR4 SNPs; A1571T and G1807A could play a role in the pathogenesis of IBD in GSDs. Further studies are required to confirm the functional importance of these polymorphisms in the pathogenesis of this disease.  相似文献   

17.
Genetic variation in the human population may lead to functional variants of genes that contribute to risk for common chronic diseases such as cancer. In an effort to detect such possible predisposing variants, we constructed haplotypes for a candidate gene and tested their efficacy in association studies. We developed haplotypes consisting of 14 biallelic neutral-sequence variants that span 142 kb of the ATM locus. ATM is the gene responsible for the autosomal recessive disease ataxia-telangiectasia (AT). These ATM noncoding single-nucleotide polymorphisms (SNPs) were genotyped in nine CEPH families (89 individuals) and in 260 DNA samples from four different ethnic origins. Analysis of these data with an expectation-maximization algorithm revealed 22 haplotypes at this locus, with three major haplotypes having frequencies > or = .10. Tests for recombination and linkage disequilibrium (LD) show reduced recombination and extensive LD at the ATM locus, in all four ethnic groups studied. The most striking example was found in the study population of European ancestry, in which no evidence for recombination could be discerned. The potential of ATM haplotypes for detection of genetic variants through association studies was tested by analysis of 84 individuals carrying one of three ATM coding SNPs. Each coding SNP was detected by association with an ATM haplotype. We demonstrate that association studies with haplotypes for candidate genes have significant potential for the detection of genetic backgrounds that contribute to disease.  相似文献   

18.
19.
Single-nucleotide polymorphisms (SNPs) play a major role in the understanding of the genetic basis of many complex human diseases. It is still a major challenge to identify the functional SNPs in disease-related genes. In this review, the genetic variation that can alter the expression and the function of the genes, namely KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2, with the potential role for the development of congenital long QT syndrome (LQTS) was analyzed. Of the total of 3,309 SNPs in all five genes, 27 non-synonymous SNPs (nsSNPs) in the coding region and 44 SNPs in the 5′ and 3′ un-translated regions (UTR) were identified as functionally significant. SIFT and PolyPhen programs were used to analyze the nsSNPs and FastSNP; UTR scan programs were used to compute SNPs in the 5′ and 3′ untranslated regions. Of the five selected genes, KCNQ1 has the highest number of 26 haplotype blocks and 6 tag SNPs with a complete linkage disequilibrium value. The gene SCN5A has ten haplotype blocks and four tag SNPs. Both KCNE1 and KCNE2 genes have only one haplotype block and four tag SNPs. Four haplotype blocks and two tag SNPs were obtained for KCNH2 gene. Also, this review reports the copy number variations (CNVs), expressed sequence tags (ESTs) and genome survey sequences (GSS) of the selected genes. These computational methods are in good agreement with experimental works reported earlier concerning LQTS.  相似文献   

20.

Background

The objective of the study was to investigate the role of genes (HSD3B1, CYP17A1, CYP19A1, HSD17B2, HSD17B1) involved in the steroid hormone biosynthesis pathway and progesterone receptor (PGR) in the etiology of gastric cancer in a population-based two-phase genetic association study.

Methods

In the discovery phase, 108 candidate SNPs in the steroid hormone biosynthesis pathway related genes and PGR were analyzed in 76 gastric cancer cases and 322 controls in the Korean Multi-Center Cancer Cohort. Statistically significant SNPs identified in the discovery phase were re-evaluated in an extended set of 386 cases and 348 controls. Pooled- and meta-analyses were conducted to summarize the results.

Results

Of the 108 SNPs in steroid hormone biosynthesis pathway related genes and PGR analyzed in the discovery phase, 23 SNPs in PGR in the recessive model and 10 SNPs in CYP19A1 in the recessive or additive models were significantly associated with increased gastric cancer risk (p<0.05). The minor allele frequencies of the SNPs in both the discovery and extension phases were not statistically different. Pooled- and meta-analyses showed CYP19A1 rs1004982, rs16964228, and rs1902580 had an increased risk for gastric cancer (pooled OR [95% CI] = 1.22 [1.01–1.48], 1.31 [1.03–1.66], 3.03 [1.12–8.18], respectively). In contrast, all PGR SNPs were not statistically significantly associated with gastric cancer risk.

Conclusions

Our findings suggest CYP19A1 that codes aromatase may play an important role in the association of gastric cancer risk and be a genetic marker for gastric cancer susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号