首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolism of glyphosate in Pseudomonas sp. strain LBr   总被引:1,自引:0,他引:1  
Metabolism of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. strain LBr, a bacterium isolated from a glyphosate process waste stream, was examined by a combination of solid-state 13C nuclear magnetic resonance experiments and analysis of the phosphonate composition of the growth medium. Pseudomonas sp. strain LBr was capable of eliminating 20 mM glyphosate from the growth medium, an amount approximately 20-fold greater than that reported for any other microorganism to date. The bacterium degraded high levels of glyphosate, primarily by converting it to aminomethylphosphonate, followed by release into the growth medium. Only a small amount of aminomethylphosphonate (about 0.5 to 0.7 mM), which is needed to supply phosphorus for growth, could be metabolized by the microorganism. Solid-state 13C nuclear magnetic resonance analysis of strain LBr grown on 1 mM [2-13C,15N]glyphosate showed that about 5% of the glyphosate was degraded by a separate pathway involving breakdown of glyphosate to glycine, a pathway first observed in Pseudomonas sp. strain PG2982. Thus, Pseudomonas sp. strain LBr appears to possess two distinct routes for glyphosate detoxification.  相似文献   

2.
A bacterial isolate, tentatively identified as Pseudomonas sp. strain TR3, was found to utilize the diaryl ester phenylbenzoate as sole source of carbon and energy. This strain has the ability to productively degrade phenylbenzoate and some substituted derivatives by a catabolic sequence which was characterized biochemically. The biodegradation of phenylbenzoate is thus initiated by an inducible esterase, effectively hydrolyzing the diaryl esters to produce stoichiometric amounts of two monoaromatic metabolites, identified as benzoate and phenol in the case of phenylbenzoate. The diaryl ester p-tolylbenzoate was hydrolyzed to yield benzoate and 4-methylphenol while 4-chlorophenylbenzoate gave rise to the production of benzoate and 4-chlorophenol. These monoaromatic catabolites were further degraded via the oxoadipate pathway.  相似文献   

3.
Pseudomonas sp. strain PG2982 has the ability to use the phosphonate herbicide, glyphosate, as a sole phosphorus source (J. K. Moore, H. D. Braymer, and A. D. Larson, Appl. Environ. Microbiol. 46:316-320, 1983). Glyphosate uptake is maximal in the late log phase of growth and is induced by phosphate starvation. Uptake is inhibited by phosphate and arsenate, but not by the amino acids glycine and sarcosine. The Km and Vmax for glyphosate uptake were calculated to be 23 microM and 0.97 nmol/mg (dry weight) per min, respectively. A phosphate transport system with a broad substrate specificity may be responsible for glyphosate uptake.  相似文献   

4.
Pseudomonas sp. strain PG2982 has the ability to use the phosphonate herbicide, glyphosate, as a sole phosphorus source (J. K. Moore, H. D. Braymer, and A. D. Larson, Appl. Environ. Microbiol. 46:316-320, 1983). Glyphosate uptake is maximal in the late log phase of growth and is induced by phosphate starvation. Uptake is inhibited by phosphate and arsenate, but not by the amino acids glycine and sarcosine. The Km and Vmax for glyphosate uptake were calculated to be 23 microM and 0.97 nmol/mg (dry weight) per min, respectively. A phosphate transport system with a broad substrate specificity may be responsible for glyphosate uptake.  相似文献   

5.
A plasmid carrying a 2.4-kilobase-pair fragment of DNA from Pseudomonas sp. strain PG2982 has been isolated which was able to increase the glyphosate resistance of Escherichia coli cells. The increase in resistance was dependent on the presence of a plasmid-encoded protein with a molecular weight of approximately 33,000, the product of a translational fusion between a gene on the vector, pACYC184, and the insert DNA. An overlapping region of the PG2982 chromosome carrying the entire gene (designated igrA) was cloned, and a plasmid (pPG18) carrying the gene was also able to increase glyphosate resistance in E. coli. A protein with a molecular weight of approximately 40,000 was encoded by the PG2982 DNA contained in pPG18. This plasmid was not able to complement a mutation in the gene for 5-enolpyruvylshikimate-3-phosphate synthase (aroA) in E. coli, and modification of glyphosate by E. coli cells containing the plasmid could not be demonstrated. The nucleotide sequence of the PG2982 DNA contained an open reading frame able to encode a protein with a calculated molecular weight of 39,396.  相似文献   

6.
A plasmid carrying a 2.4-kilobase-pair fragment of DNA from Pseudomonas sp. strain PG2982 has been isolated which was able to increase the glyphosate resistance of Escherichia coli cells. The increase in resistance was dependent on the presence of a plasmid-encoded protein with a molecular weight of approximately 33,000, the product of a translational fusion between a gene on the vector, pACYC184, and the insert DNA. An overlapping region of the PG2982 chromosome carrying the entire gene (designated igrA) was cloned, and a plasmid (pPG18) carrying the gene was also able to increase glyphosate resistance in E. coli. A protein with a molecular weight of approximately 40,000 was encoded by the PG2982 DNA contained in pPG18. This plasmid was not able to complement a mutation in the gene for 5-enolpyruvylshikimate-3-phosphate synthase (aroA) in E. coli, and modification of glyphosate by E. coli cells containing the plasmid could not be demonstrated. The nucleotide sequence of the PG2982 DNA contained an open reading frame able to encode a protein with a calculated molecular weight of 39,396.  相似文献   

7.
Metabolism of glyphosate in an Arthrobacter sp. GLP-1   总被引:9,自引:0,他引:9  
The metabolism of glyphosate [N-(phosphonomethyl)glycine] in a bacterium tentatively identified as an Arthrobacter sp., capable of growth on this herbicide as its sole phosphorus source, has been investigated using solid-state NMR techniques as well as radiotracer analysis. The pathway involves the conversion of glyphosate to glycine, a C1 unit and phosphate. The phosphonomethyl carbon is specifically incorporated into the amino acids serine, cysteine, methionine, and histidine, as well as into purine bases and thymine, indicating the involvement of tetrahydrofolate in single-carbon transfer reactions. Glycine derived from glyphosate is utilized in purine and protein biosynthesis. This pathway for glyphosate degradation in a gram-positive bacterium is similar to that previously reported for Pseudomonas sp. PG2982 [Jacob et al. (1985) J. Biol. Chem. 260, 5899-5905] and is distinct from that reported for soil metabolism of glyphosate where aminomethylphosphonic acid has been shown to be a major metabolite. Preliminary evidence is presented which indicates that the conversion of glyphosate to glycine and the C1 unit involves the intermediate formation of sarcosine. Thus, the primary event in glyphosate degradation by Arthrobacter sp. GLP-1 is the cleavage of its C-P bound. This report constitutes the first demonstration of the metabolism of glyphosate in a gram-positive bacterium.  相似文献   

8.
9.
A Pseudomonas sp. degraded benzalphthalide to o-phthalate and benzoate. A tentative pathway for the metabolism of benzalphthalide in this Pseudomonas sp. is proposed on the basis of isolated metabolites, oxygraphic assay and enzymatic studies.  相似文献   

10.
Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW   总被引:1,自引:0,他引:1  
Abstract The tandem mini-exon gene repeat is an ideal diagnostic target for trypanosomatids because it includes sequences that are conserved absolutely coupled with regions of extreme variability. We have exploited these features and the polymerase chain reaction to differentiate Phytomonas strains isolated from phloem, fruit or latex of various host plants. While the transcribed regions are nearly identical, the intergenic sequences are variable in size and content (130–332 base pairs). The mini-exon genes of these phytomonads can therefore be distinguished from each other and from the corresponding genes in insect trypanosomes, with which they are oft confused.  相似文献   

11.
Pseudomonas sp. strain PPD and Alcaligenes sp. strain PPH isolated from soil by enrichment culture technique utilize 2-, 3- and 4-hydroxybenzoates as the sole source of carbon and energy. The degradation pathways were elucidated by performing whole-cell O(2) uptake, enzyme activity and induction studies. Depending on the mixture of carbon source and the preculture condition, strain PPH was found to degrade 2-hydroxybenzoate either via the catechol or gentisate route and has both salicylate 1-hydroxylase and salicylate 5-hydroxylase. Strain PPD utilizes 2-hydroxybenzoate via gentisate. Both strains degrade 3- and 4-hydroxybenzoate via gentisate and protocatechuate, respectively. Enzymes were induced by respective hydroxybenzoate. Growth pattern, O(2) uptake and enzyme activity profiles on the mixture of three hydroxybenzoates as a carbon source suggest coutilization by both strains. When 3- or 4-hydroxybenzoate grown culture was used as an inoculum, strain PPH failed to utilize 2-hydroxybenzoate via catechol, indicating the modulation of the metabolic pathways, thus generating metabolic diversity.  相似文献   

12.
Metabolism of DDT analogues by a Pseudomonas sp.   总被引:4,自引:3,他引:1       下载免费PDF全文
A Pseudomonas sp. rapidly metabolized several nonchlorinated analogues of DDT, with the exception of 2,2-diphenylethanol, as the sole carbon source. Several of the mono-p-chloro-substituted diphenyl analogues were also metabolized as the sole carbon source by the bacterium. The resulting chlorinated aromatic acid metabolites were not further metabolized. The isolate was unable to metabolize p,p'-dichlorodiphenyl analogues as the sole carbon source.  相似文献   

13.
A bacterium (strain B1) utilizing hexadecyltrimethylammonium chloride as a carbon and energy source was isolated from activated sludge and tentatively identified as a Pseudomonas sp. This bacterium only grew on alkyltrimethylammonium salts (C12 to C22) and possible intermediates of hexadecyltrimethylammonium chloride breakdown such as hexadecanoate and acetate. Pseudomonas strain B1 did not grow on amines. Simultaneous adaptation studies suggested that the bacterium oxidized only the alkyl chain of hexadecyltrimethylammonium chloride. This was confirmed by the stoichiometric formation of trimethylamine from hexadecyltrimethylammonium chloride. The initial hexadecyltrimethylammonium chloride oxygenase activity, measured by its ability to form trimethylamine, was NAD(P)H and O2 dependent. Finally, assays of aldehyde dehydrogenase, hexadecanoyl-coenzyme A dehydrogenase, and isocitrate lyase in cell extracts revealed the potential of Pseudomonas strain B1 to metabolize the alkyl chain via beta-oxidation.  相似文献   

14.
A bacterium (strain B1) utilizing hexadecyltrimethylammonium chloride as a carbon and energy source was isolated from activated sludge and tentatively identified as a Pseudomonas sp. This bacterium only grew on alkyltrimethylammonium salts (C12 to C22) and possible intermediates of hexadecyltrimethylammonium chloride breakdown such as hexadecanoate and acetate. Pseudomonas strain B1 did not grow on amines. Simultaneous adaptation studies suggested that the bacterium oxidized only the alkyl chain of hexadecyltrimethylammonium chloride. This was confirmed by the stoichiometric formation of trimethylamine from hexadecyltrimethylammonium chloride. The initial hexadecyltrimethylammonium chloride oxygenase activity, measured by its ability to form trimethylamine, was NAD(P)H and O2 dependent. Finally, assays of aldehyde dehydrogenase, hexadecanoyl-coenzyme A dehydrogenase, and isocitrate lyase in cell extracts revealed the potential of Pseudomonas strain B1 to metabolize the alkyl chain via beta-oxidation.  相似文献   

15.
The bacterium Pseudomonas PG2982 metabolizes glyphosate (N-(phosphonomethyl)glycine) by converting it to glycine, a one-carbon unit, and phosphate. Here we show that this conversion involves the intermediate formation of sarcosine. When cells are incubated with [14C]glyphosate, the 14C can be entrapped in glycine or sarcosine. With added sarcosine, 14C from all three carbons of glyphosate is recovered solely in sarcosine. In experiments with glycine, radioactivity from the carboxymethyl moiety of glyphosate is trapped in glycine as well as serine, whereas radioactivity from the phosphonomethyl carbon is only incorporated into serine. These results are consistent with a pathway involving the conversion of glyphosate to sarcosine by cleavage of its carbon-phosphorus (C-P) bond, followed by the oxidation of sarcosine to glycine and formaldehyde.  相似文献   

16.
Transport of mevalonate by Pseudomonas sp. strain M.   总被引:4,自引:4,他引:0       下载免费PDF全文
Pseudomonas sp. M, isolated from soil by elective culture on R,S-mevalonate as the sole source of carbon, possessed an inducible transport system for mevalonate. This high-affinity system had a pH optimum of 7.0, a temperature optimum of 30 degrees C, a Km for R,S-mevalonate of 88 microM, and a V max of 26 nmol of mevalonate transported per min/mg of cells (dry weight). Transport was energy dependent since azide, cyanide, or m-chlorophenylhydrazone caused complete cessation of transport activity. Transport of mevalonate was highly substrate specific. Of the 16 structural analogs of mevalonate tested, only acetoacetate, mevinolin, and mevaldehyde significantly inhibited transport. Growth of cells on mevalonate induced transport activity by 40- to 65-fold over that observed in cells grown on alternate carbon sources. A biphasic pattern for cell growth, as well as for induction of mevalonate transport activity, was observed when mevalonate was added to a culture actively growing on glucose. The induction of transport activity under these conditions began within 30 min after the addition of mevalonate and reached 60% of maximal activity during phase I. A further increase in mevalonate transport activity occurred during phase II of growth. Glucose was the preferred carbon source for growth during phase I, whereas mevalonate was preferred during phase II. Only one isomer of the R,S-mevalonate mixture appeared to be utilized, since growth ceased after 45 to 50% of the total mevalonate was depleted from the medium. However, nearly 30% of the preferred mevalonate isomer was depleted from the medium during phase I without significant metabolism to CO2. These results suggest that mevalonate or a mevalonate catabolite may accumulate in cells of Pseudomonas sp. M during phase I and that glucose metabolism may inhibit or repress the expression of enzymes further along the mevalonate catabolic pathway.  相似文献   

17.
Dienelactone hydrolase from Pseudomonas sp. strain B13.   总被引:6,自引:5,他引:1       下载免费PDF全文
Dienelactone hydrolase (EC 3.1.1.45) catalyzes the conversion of cis- or trans-4-carboxymethylenebut-2-en-4-olide (dienelactone) to maleylacetate. An approximately 24-fold purification from extracts of 3-chlorobenzoate-grown Pseudomonas sp. strain B13 yielded a homogeneous preparation of the enzyme. The purified enzyme crystallized readily and proved to be a monomer with a molecular weight of about 30,000. Each dienelactone hydrolase molecule contains two cysteinyl side chains. One of these was readily titrated by stoichiometric amounts of p-chloromercuribenzoate, resulting in inactivation of the enzyme; the inactivation could be reversed by the addition of dithiothreitol. The other cysteinyl side chain appeared to be protected in the native protein against chemical reaction with p-chloromercuribenzoate. The properties of sulfhydryl side chains in dienelactone hydrolase resembled those that have been characterized for bacterial 4-carboxymethylbut-3-en-4-olide (enol-lactone) hydrolases (EC 3.1.1.24), which also are monomers with molecular weights of about 30,000. The amino acid composition of the dienelactone hydrolase resembled the amino acid composition of enol-lactone hydrolase from Pseudomonas putida, and alignment of the NH2-terminal amino acid sequence of the dienelactone hydrolase with the corresponding sequence of an Acinetobacter calcoaceticus enol-lactone hydrolase revealed sequence identity at 8 of the 28 positions. These observations foster the hypothesis that the lactone hydrolases share a common ancestor. The lactone hydrolases differed in one significant property: the kcat of dienelactone hydrolase was 1,800 min-1, an order of magnitude below the kcat observed with enol-lactone hydrolases. The relatively low catalytic activity of dienelactone hydrolase may demand its production at the high levels observed for induced cultures of Pseudomonas sp. strain B13.  相似文献   

18.
Glyphosate catabolism by Pseudomonas sp. strain PG2982.   总被引:7,自引:0,他引:7       下载免费PDF全文
The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined by using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3-14C]glyphosate revealed that approximately 50 to 59% of the C-3 carbon was oxidized to CO2. Fractionation of stationary-phase cells labeled with [3-14C]glyphosate revealed that from 45 to 47% of the assimilated label is distributed to proteins and that the amino acids methionine and serine are highly labeled. Adenine and guanine received 90% of the C-3 label found in the nucleic acid fraction, and the only pyrimidine base labeled was thymine. These results indicated that C-3 of glyphosate was at some point metabolized to a C-1 compound whose ultimate fate could be both oxidation to CO2 and distribution to amino acids and nucleic acid bases that receive a C-1 group from the C-1-donating coenzyme tetrahydrofolate. Pulse-labeling of PG2982 cells with [3-14C]glyphosate resulted in the isolation of [3-14C]sarcosine as an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of a sarcosine-oxidizing enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. This pathway is supported by the results of [1,2-14C]glyphosate metabolism studies, which show that radioactivity in the proteins of labeled cells is found only in the glycine and serine residues.  相似文献   

19.
Aims: To isolate and characterize a potent molybdenum‐reducing bacterium. Methods and Results: A minimal salt medium supplemented with 10 mmol l?1 molybdate, glucose (1·0%, w/v) as a carbon source and ammonium sulfate (0·3%, w/v) as a nitrogen source was used in the screening process. A molybdenum‐reducing bacterium was isolated and tentatively identified as Pseudomonas sp. strain DRY2 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Strain DRY2 produced 2·4, 3·2 and 6·2 times more molybdenum blue compared to Serratia marcescens strain DRY6, Enterobacter cloacae strain 48 and Eschericia coli K12, respectively. Molybdate reduction was optimum at 5 mmol l?1 phosphate. The optimum molybdate concentration that supported molybdate reduction at 5 mmol l?1 phosphate was between 15 and 25 mmol l?1. Molybdate reduction was optimum at 40°C and at pH 6·0. Phosphate concentrations higher than 5 mmol l?1 strongly inhibited molybdate reduction. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide and cyanide did not inhibit the molybdenum‐reducing enzyme activity. Chromium, copper, mercury and lead inhibited the molybdenum‐reducing activity. Conclusions: A novel molybdenum‐reducing bacterium with high molybdenum reduction capacity has been isolated. Significance and Impact of the Study: Molybdenum is an emerging global pollutant that is very toxic to ruminants. The characteristics of this bacterium suggest that it would be useful in the bioremediation of molybdenum pollutant.  相似文献   

20.
Pseudomonas sp. strain ADP uses the herbicide atrazine as the sole nitrogen source. We have devised a simple atrazine degradation assay to determine the effect of other nitrogen sources on the atrazine degradation pathway. The atrazine degradation rate was greatly decreased in cells grown on nitrogen sources that support rapid growth of Pseudomonas sp. strain ADP compared to cells cultivated on growth-limiting nitrogen sources. The presence of atrazine in addition to the nitrogen sources did not stimulate degradation. High degradation rates obtained in the presence of ammonium plus the glutamine synthetase inhibitor MSX and also with an Nas(-) mutant derivative grown on nitrate suggest that nitrogen regulation operates by sensing intracellular levels of some key nitrogen-containing metabolite. Nitrate amendment in soil microcosms resulted in decreased atrazine mineralization by the wild-type strain but not by the Nas(-) mutant. This suggests that, although nitrogen repression of the atrazine catabolic pathway may have a strong impact on atrazine biodegradation in nitrogen-fertilized soils, the use of selected mutant variants may contribute to overcoming this limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号