首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo ethylene production by hypocotyl segments of sunflower seedlings and in vitro activity of 1-aminocyclopropane-1-carboxylic acid oxidase (formerly ethylene-forming enzyme) extacted from the same tissues increase with increasing concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and oxygen. ACC oxidase activity follows Michaelis-Menten kinetics. The apparent Km values of the enzyme towards ACC, estimated in vivo and in vitro, are respectively 219 M and 20.6 M. Both Km values towards O2 are similar, ca 10.6–11.4%. A decrease in concentration in one of the substrates (ACC or O2) results in an increase in in vivo apparent Km of ACC oxidase for the other substrate. On the contrary, Km values of the enzyme towards ACC or O2 estimated in vitro are not dependent upon the concentration of the other substrate (ACC or O2).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - MACC malonylate 1-aminocyclopropane-1-carboxylic acid - SD standard deviation  相似文献   

2.
A simple and sensitive chemical assay was developed for 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene. The assay is based on the liberation of ethylene from ACC at pH 11.5 in the presence of pyridoxal phosphate, MnCl2 and H2O2. This assay was used to detect ACC in extracts of tomato fruits (Lycopersicon esculentum Mill.) and to measure the activity of a soluble enzyme from tomato fruit that converted S-adenosylmethionine (SAM) to ACC. The enzyme had a Km of 13 M for SAM, and conversion of SAM to ACC was competitively and reversibly inhibited by aminoethoxyvinylglycine (AVG), an analog of rhizobitoxine. The Ki value for AVG was 0.2 M. The level of the ACC-forming enzyme activity was positively correlated with the content of ACC and the rate of ethylene formation in wild-type tomatoes of different developmental stages. Mature fruits of the rin (non-ripening) mutant of tomato, which only produce low levels of ethylene, contained much lower levels of ACC and of the ACC-forming enzyme activity than wild-type tomato fruits of comparable age.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid - SAM S-adenosyl-L-methionine Michigan Agricultural Experiment Station No. 8876  相似文献   

3.
M. Perl 《Planta》1978,139(3):239-243
Cotton (Gossypium hirsutum) seeds and Sorghum vulgare caryopses are able to incorporate CO2 through a PEP-carboxylating enzyme (EC 4.1.1.38). The enzyme activity is optimal at pH 8.2 and is unaffected by ATP, GDP or acetyl CoA. The partially purified cotton enzyme is stimulated by inorganic phosphate with an apparent Km of 0.3 mM. The enzymes from both cultivars are inhibited by pyrophosphate, malate, and aspartate but not by succinate. Kinetic studies for Sorghum and cotton seed enzymes show apparent Km values for carbonate of 5 mM and 1.2 mM and for PEP of 36 M and 5 mM, respectively. The Vmax values are 90 and 3.3 nmol min-1 mg protein-1, respectively.A two-fold increase in the enzyme activity from cotton seeds occurs after 2 h under laboratory germination conditions after which the activity drops sharply to 1/3 of the original activity after 5 h imbibition. No such change was observed in Sorghum caryopses enzyme. A correlation between PEP-carboxylase activity and seed vigor in both cultivars was demonstrated.Abbreviations GOT glutamicoxaloacetic-transaminase - MDH malic dehydrogenase-NADH2 - RH relative humidity  相似文献   

4.
We have studied the mechanism of auxin autonomy in tobacco (Nicotiana tabacum L.) crowngall tissues transformed by the auxin-mutant (tms ) A66 strain of Agrobacterium tumefaciens. Normally, tms tobacco tumor tissues require the formation of shoots to exhibit auxin-independent growth in culture. We have isolated from tms tobacco cells several stable variants that are fully hormone-independent and grow rapidly as friable, unorganized tissues, thus mimicking the growth and morphology of tms + tobacco cells that produce high levels of auxin. However, none of the variants contained the high levels of auxin found in tms + tumor cells. The variants could be divided into two classes with respect to their response to applied auxin. The first class was highly sensitive to applied auxin: low concentrations (1 M) of -naphthaleneacetic acid (NAA) severely inhibited growth and markedly stimulated the accumulation of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). The second class of variants showed a low sensitivity to applied auxin: growth was promoted by concentrations of NAA up to 10 M, and growth inhibition and high ACC levels were observed only at high NAA concentrations (100 M). Unorganized variants with low auxin sensitivity were also isolated from a variant line with high auxin sensitivity. The isolation of tumor cells that exhibited the growth phenotype of tms + cells while retaining the low auxin content and low auxin sensitivity of tms cells indicates that full hormone autonomy, characteristic of wild-type crown-gall tumors, can be achieved by a mechanism that is independent of changes in the auxin physiology of the cells.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - MACC N-malonyl ACC - NAA naphthaleneacetic acid - tms tumor morphology shooty, the auxin biosynthesis locus of Agrobacterium Ti plasmids The authors thank Dr. Andrew Binns (University of Pennsylvania, Philadelphia, USA) for providing cell lines TA6-5 and TA66C3-78, and Mr. James Dacey for preparation of the composite photograph used in Fig. 1. Support for this work by the National Science Foundation (DMB84-17087) and the U.S. Department of Agriculture (86-CRCR-1-2150) is gratefully acknowledged.  相似文献   

5.
The ipt gene from the T-DNA of Agrobacterium tumefaciens was transferred to tobacco (Nicotiana tabacum L.) in order to study the control which auxin appears to exert over levels of cytokinin generated by expression of this gene. The transgenic tissues contained elevated levels of cytokinins, exhibited cytokinin and auxin autonomy and grew as shooty calli on hormone-free media. Addition of 1-naphthylacetic acid to this culture medium reduced the total level of cytokinins by 84% while 6-benzylaminopurine elevated the cytokinin level when added to media containing auxin. The cytokinins in the transgenic tissue were labelled with 3H and auxin was found to promote conversion of zeatin-type cytokinins to 3H-labelled adenine derivatives. When the very rapid metabolism of exogenous [3H]zeatin riboside was suppressed by a phenylurea derivative, a noncompetitive inhibitor of cytokinin oxidase, auxin promoted metabolism to adenine-type compounds. Since these results indicated that auxin promoted cytokinin oxidase activity in the transformed tissue, this enzyme was purified from the tobacco tissue cultures. Auxin did not increase the level of the enzyme per unit tissue protein, but did enhance the activity of the enzyme in vitro and promoted the activity of both glycosylated and non-glycosylated forms. This enhancement could contribute to the decrease in cytokinin level induced by auxin. Studies of cytokinin biosynthesis in the transgenic tissues indicated that trans-hydroxylation of isopentenyladenine-type cytokinins to yield zeatin-type cytokinins occurred principally at the nucleotide level.Abbreviations Ade adenine - Ados adenosine - BA 6-benzylaminopurine - C control - Con A concanavallin A - CP cellulose phosphate - IPT isopentenyl transferase - NAA 1-naphthylacetic acid - NP normal phase - NPPU N-(3-nitrophenyl)-N-phenylurea - RIA radioimmunoassay - RP reversed phase We wish to thank Dr. J. Zwar for supplying phenylurea derivitives.  相似文献   

6.
An enzymatic complex from Rhodotorula was characterized and it was indicated that it possessed thiosulfate-oxidizing activity, forming tetrathionate as well as sulfite oxidase activity. Both activities coupled with ferricyanide and native cytochrome c but no with mammalian cytochrome c. Activities of these enzymes were inhibited by thiol inhibitors. Chelating agents did not affect thiosulfate oxidizing activity and only moderately inhibited sulfite oxidase. Both activities disappeared after treatment with proteolytic enzymes or sodium deoxycholate which indicates an essential role played not only by protein but also by phospholipids in the enzymatic activity of the complex. Thiosulfate oxidizing enzyme had a K m for thiosulfate of 0.16 mM with ferricyanide as electron acceptor and of 14 M with native cytochrome c and of 0.34 mM for ferricyanide. Optimum pH for this activity was 7.8. Other properties of this enzyme were similar to those of thiobacilli and heterotrophic bacteria. The activity of sulfite oxidase was inhibited by 50% with 10 M AMP. The K m values of this enzyme were 1 mM with ferricyanide as electron acceptor and 60 M with native cytochrome c for sulfite and 0.42 mM for ferricyanide. The enzyme did not show a specific optimum pH value with ferricyanide as electron acceptor. However, with native cytochrome c optimum pH was 7.8 for its activity. In many properties the sulfite oxidase from Rhodotorula was similar to the enzyme from Thiobacillus ferrooxidans, T. concretivorus, T. thioparus and T. novellus.Abbreviations CSH reduced glutathion - APS reductase, adenosine-S-phosphosulfate reductase - pHMB p-hydroxymercuribenzoate - NEM N-ethylmalcimide - TCA trichloroacetic acid - PPO 2,5-diphenyloxazole - POPOP 2,2-p-phenylen-bis 5-phenyloxazol  相似文献   

7.
Strom  E. V.  Dinarieva  T. Yu.  Netrusov  A. I. 《Microbiology》2004,73(2):124-128
The cbo-type oxidase of Methylobacillus flagellatus KT was purified to homogeneity by preparative native gel electrophoresis, and the kinetic properties and substrate specificity of the enzyme were studied. Ascorbate and ascorbate/N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) were oxidized by cytochrome cbo with a pH optimum of 8.3. With TMPD as an electron donor for the cbo-type oxidase, the optimal pH (7.0 to 7.6) was determined from the difference between respiration rates in the presence of ascorbate/TMPD and only ascorbate. The kinetic constants determined at pH 7.0 were as follows: oxidation by the enzyme of reduced TMPD was characterized by K M = 0.86 mM and V max = 1.1 mol O2/(min mg protein), and oxidation of reduced horse heart cytochrome c was characterized by K M = 0.09 mM and V max = 0.9 mol O2/(min mg protein). Cyanide inhibited ascorbate/TMPD–oxidase activity (K i = 4.5–5.0 M). The soluble cytochrome c H (12 kDa), partially purified from M. flagellatus KT, was found to serve as a natural electron donor for the cbo-type oxidase.  相似文献   

8.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 mol NADH oxidized min–1 mg–1 protein. Apparent Km values for NADH and O2 were determined to be 7.5 M and 85 M, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85°C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.  相似文献   

9.
Cell suspensions of Methanobrevibacter arboriphilus catalyzed the reduction of O2 with H2 at a maximal specific rate of 0.4 U (mol/min) per mg protein with an apparent K m for O2 of 30 M. The reaction was not inhibited by cyanide. The oxidase activity was traced back to a coenzyme F420-dependent enzyme that was purified to apparent homogeneity and that catalyzed the oxidation of 2 F420H2 with 1 O2 to 2 F420 and 2 H2O. The apparent K m for F420 was 30 M and that for O2 was 2 M with a V max of 240 U/mg at 37°C and pH 7.6, the pH optimum of the oxidase. The enzyme did not use NADH or NADPH as electron donor or H2O2 as electron acceptor and was not inhibited by cyanide. The 45-kDa protein, whose gene was cloned and sequenced, contained 1 FMN per mol and harbored a binuclear iron center as indicated by the sequence motif H–X–E–X–D–X62H–X18D–X60H. Sequence comparisons revealed that the F420H2 oxidase from M. arboriphilus is phylogenetically closely related to FprA from Methanothermobacter marburgensis (71% sequence identity), a 45-kDa flavoprotein of hitherto unknown function, and to A-type flavoproteins from bacteria (30–40%), which all have dioxygen reductase activity. With heterologously produced FprA from M. marburgensis it is shown that this protein is also a highly efficient F420H2 oxidase and that it contains 1 FMN and 2 iron atoms. The presence of F420H2 oxidase in methanogenic archaea may explain why some methanogens, e.g., the Methanobrevibacter species in the termite hindgut, cannot only tolerate but thrive under microoxic conditions.Dedicated to Hans Schlegel on the occasion of his 80th birthday.  相似文献   

10.
Polyphenoloxidase from mango(Mangifera indica) peel was purified to homogeneity by ammonium sulphate fractionation, chromatography on DEAE-Sephadex and gel filtration of Sephadex G-200. The enzyme had an apparent molecular weight of 136,000. Its pH and temperature optimum were 5.4 and 50‡C, respectively. The enzyme possessed catecholase activity and was specific too-dihydroxy phenols. The enzyme also exhibited peroxidase activity. Some non-oxidizable phenolic compounds inhibited the enzyme competitively. High inhibitory effects were also shown by some metal chelators and reducing agents, Mango peel polyphenol oxidase when immobilized onto DEAE Sephadex showed slightly higher Km for catechol and lower pH and temperature optima.  相似文献   

11.
Purification and characterization of barley-aleurone xylanase   总被引:1,自引:0,他引:1  
Xylanase (-1,4-D-xylan xylanohydrolase; EC 3.2.1.8) from aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) was purified and characterized. Purification was by preparative isoelectric focusing and a Sephadex G-200 column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme showed a single protein band with an apparent molecular weight (Mr)=34000 daltons. The isoelectric point of the enzyme was 4.6. The enzyme had maximum activity on xylan at pH 5.5 and at 35° C. It was most stable between pH 5 and 6 and at temperatures between 0 and 4° C. The Km was 0.86 mg xylan·ml-1.Abbreviations GA3 gibberellic acid - kDa kilodalton - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

12.
The trehalosyl dextrin-forming enzyme (TDFE) mainly catalyzes an intramolecular transglycosyl reaction to form trehalosyl dextrins from dextrins by converting the -1,4-glucosidic linkage at the reducing end to an -1,1-glucosidic linkage. In this study, the treY gene encoding TDFE was PCR cloned from the genomic DNA of Sulfolobus solfataricus ATCC 35092 to an expression vector with a T7 lac promoter and then expressed in Escherichia coli. The recombinant TDFE was purified sequentially by using heat treatment, ultrafiltration, and gel filtration. The obtained recombinant TDFE showed an apparent optimal pH of 5 and an optimal temperature of 75°C. The enzyme was stable in a pH range of 4.5–11, and the activity remained unchanged after a 2-h incubation at 80°C. The transglycosylation activity of TDFE was higher when using maltoheptaose as substrate than maltooligosaccharides with a low degree of polymerization (DP). However, the hydrolysis activity of TDFE became stronger when low DP maltooligosaccharides, such as maltotriose, were used as substrate. The ratios of hydrolysis activity to transglycosylation activity were in the range of 0.2–14% and increased when the DP of substrate decreased. The recombinant TDFE was found to exhibit different substrate specificity, such as its preferred substrates for the transglycosylation reaction and the ratio of hydrolysis to transglycosylation of the enzyme reacting with maltotriose, when compared with other natural or recombinant TDFEs from Sulfolobus.  相似文献   

13.
A glucosyltransferase, which catalyses the glucosylation of flavonols, using uridine diphosphate-D-glucose as glucose donor, has been isolated and purified about 5–10 fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The pH optimum for this reaction was ca. 8.5 in glycine-NaOH buffer, and no additional cofactors were required. The enzyme glucosylated the following flavonols predominantly at the 3-position: quercetin (Km 126 M), kaempferol (Km 172 M), isorhamnetin (Km 200 M) and fisetin (Km 270 M). With quercetin as substrate, the apparent Km value for uridine diphosphate-D-glucose was 0.3 M. Glucosylation of flavonols and flavones by this preparation occurred weakly also at the 7-position. No activity was found with dihydroquercetin, naringenin, 4,2,4-trihydroxychalcone, daidzein or texasin. The enzyme was specific for flavonoid compounds, since no activity was observed towards cinnamic acids or simple phenols. However, the preparation was contaminated by a vanillic acid glucosyltransferase, from which it could be partially separated by ionexchange chromatography. The specific activity of the flavonol 3-O-glucosyltransferase increased with age of the culture, reaching a maximum late in the growth cycle of the culture.Abbreviations SAM S-adenosyl-L-methionine - CMT, SAM caffeate 3-O-methyltransferase - FMT, SAM flavonoid O-methyltransferase - UDP-glucose uridine diphosphate-D-glucose - PAL phenylalanine ammonia-lyase  相似文献   

14.
The pathway of ethylene biosynthesis was examined in two lower plants, the semi-aquatic ferns Regnellidium diphyllum Lindm. and Marsilea quadrifolia L. As a positive control for the ethylene-biosynthetic pathway of higher plants, leaves of Arabidopsis thaliana (L.) Heynh. were included in each experiment. Ethylene production by Regnellidium and Marsilea was not increased by treatment of leaflets with 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene in higher plants. Similarly, ethylene production was not inhibited by application of aminoethoxyvinylglycine and -aminoisobutyric acid, inhibitors of the ethylene biosynthetic enzymes ACC synthase and ACC oxidase, respectively. However, ACC was present in both ferns, as was ACC synthase. Compared to leaves of Arabidopsis, leaflets of Regnellidium and Marsilea incorporated little [14C]ACC and [14C]methionine into [14C]ethylene. From these data, it appears that the formation of ethylene in both ferns occurs mainly, if not only, via an ACC-independent route, even though the capacity to synthesize ACC is present in these lower plants.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AdoMet S-adenosyl-l-methionine - AIB -aminoisobutyric acid - AVG aminoethoxyvinylglycine This research was supported by the U.S. Department of Energy through grant No. DE-FG02-91ER20021 and, in part, by a fellowship of the National Engineering and Research Council of Canada to Jacqueline Chernys.  相似文献   

15.
Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) has been purified 42-fold from 4-hydroxybenzoate-grown cells of Rhizobium trifolii TA1, where it constitutes about 2% of the cell protein. The dioxygenase has a molecular weight of 220,000, with two dissimilar sub-units of molecular weights 29,000 and 26,500, corresponding to an 44 composition. The enzyme is specific for protocatechuate, with a Km of 1.75×10-5 M and maximum activity at pH 9.2. Metal removal and replacement studies indicate that the enzyme contains complexed Fe3+ which is required for activity. Direct atomic absorption analysis gave 1.3–1.5 g atoms Fe3+ per mole of isolated enzyme, but correction for metal-deficient proteins suggests that the value is close to 2.  相似文献   

16.
I. Stulen  G. F. Israelstam  A. Oaks 《Planta》1979,146(2):237-241
An asparagine synthetase which is active with either glutamine or NH 4 + has been found in maize (Zea mays L.) roots. Unlike the enzyme obtained from legume cotyledons, the maize-root enzyme is only slightly more efficient with glutamine (Km, 1.0 mM) than with NH 4 + (Km, 2.0–3.0 mM). The activity of this enzyme is higher in the mature root than in the root-tip region, i.e. root cells develop a capacity to make asparagine from glutamine or NH 4 + as they mature. -Cyanoalanine synthetase is also present in maize roots. The apparent Km for cysteine is 2.6 mM and for cyanide is 0.57 mM. The enzyme is more active in the root tip than in mature root tissue. Thus, if asparagine were made in the root tip, the cyanide pathway could represent the mechanism of synthesis. It is our contention, however, that this potential is not realized under normal conditions because 14C-experiments performed previously have indicated a limited availability of both CN and cysteine in the maize root.  相似文献   

17.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

18.
The validity of a chemiosmotic hypothesis for uptake of weak acids as an explanation for the accumulation of auxin by cells has been explored further by comparing the uptake of indole-3-acetic acid (IAA) by 1-mm segments of corn (Zea mays L.) coleoptiles with that of benzoic acid and two neutral indoles, indoleethanol and indoleacetonitrile, which do not ionize. These substances, while structurally related to IAA lack both auxin activity and polar transport. Uptake of IAA and benzoic acid increase with decreasing external pH, whereas the uptake of the two neutral indoles is independent of external pH.Although metabolism of IAA, during 90 min or less, is minimal and without significant effect on its uptake, metabolism of benzoic acid appears responsible for the apparent saturation of benzoic acid uptake at high concentrations. An inhibitor of auxin transport, N-1-naphthylphathalamic acid (NPA), stimulates uptake of IAA but has no effect on uptake of either benzoic acid or the two neutral indoles. Thus, NPA does not affect the driving forces for accumulation of weak acids but probably specifically decreases the flux of the auxin anions relative to undissociated auxin. Since the electrochemical potential of auxin anions is usually higher in than outside cells, blocking the anion flux with NPA would enhance auxin uptake. Azide, which abolishes accumulation of both IAA and benzoic acid, may simply collapse the pH gradient across the plasma membrane.In the absence of NPA, increasing concentrations of auxins or the analogoue -naphthaleneacetic acid (-NAA) exert two opposing effects on the uptake of IAA-depression and stimulation. Stimulation results from saturating the anion flux. With uptake fully stimulated by NPA, however, increasing concentrations of auxins or analogues only depress uptake of [3H]IAA. These results are consistent with more than one path for auxin transport each with a different dependence on concentration. In depressing NPA-stimulated IAA uptake, the effectiveness of -NAAIAA-NAA benzoic acid, a specificity similar to that of an auxin binding site in vitro that has been implicated by others in auxin transport. The results support the general hypothesis that cellular auxin uptake and polar transport through tissues are chemiosmotically coupled to the electrochemical potential of auxin and protons.Abbreviations IAA indole-3-acetic acid - -NAA -naphthaleneacetic acid - -NAA -naphthaleneacetic acid - NPA N-1-naphthylphthalamic acid  相似文献   

19.
It has been shown that oxidation of polyamines by polyamine oxidases can produce toxic compounds (H2O2, aldehydes, ammonia) and that the polyamine oxidase-polyamine system is implicated, in vitro, in the death of several parasites. Using Amoeba proteus as an in vitro model, we studied the cytotoxicity to these cells of spermine, spermidine, their acetyl derivatives, and their hypothetical precursors. Spermine and N 1-acetylspermine were more toxic than emetine, an amoebicidal reference drug. Spermine presented a short-term toxicity, but a 48-h contact time was necessary for the high toxicity of spermidine. The uptake by Amoeba cells of the different polyamines tested was demonstrated. On the other hand, a high polyamine oxidase activity was identified in Amoeba proteus crude extract. Spermine (theoretical 100%) and N 1-acetylspermine (64%) were the best substrates at pH 9.5, while spermidine, its acetyl derivatives, and putrescine were very poorly oxidized by this enzyme (3–20%). Spermine oxidase activity was inhibited by phenylhydrazine (nil) and isoniazid ( 50%). Mepacrine did not inhibit the enzyme activity at pH 8. Neither monoamine nor diamine oxidase activity ( 10%) was found. It must be emphasized that spermine, the best enzyme substrate, is the most toxic polyamine. This finding suggests that knowledge of polyamine oxidase specificity can be used to modulate the cytotoxicity of polyamine derivatives. Amoeba proteus was revealed as a simple model for investigation of the connection between cytotoxicity and enzyme activity.Abbreviations DAO diamine oxidase - DFMO DL--difluoromethylornithine - DP 1-3-diaminopropane - IC50 50% inhibition concentration - MAO monoamine oxidase - N 1-ACSP; N 1-acetylspermine - N1-ACSPD N 1-acetylspermidine - N 8-ACSPD N 8-acetylspermidine - ODC ornithine decarboxylase - PAO(s) polyamine oxidase(s) - PUT putrescine - SP spermine - SPD spermidine  相似文献   

20.
We have studied ethylene biosynthesis in cloned crown-gall cell lines of Nicotiana tabacum L., N. glutinosa L., and Lycopersicon esculentum (L.) Mill. transformed by the A6 strain of Agrobacterium tumefaciens (Smith and Townsend) Conn. or a tms (shooty) mutant strain, A66. Both the synthesis of the ethylene precursor 1-aminocyclo-propane-1-carboxylic acid (ACC) and the conversion of ACC to ethylene were affected by crown-gall transformation. All A6-transformed cell lines contained about 50 times more ACC than the A66-transformed cell lines, indicating that the tms genes stimulate ACC synthesis. On the other hand, A6-transformed N. tabacum and L. esculentum cell lines showed a very low capacity to convert ACC to ethylene when compared with A66-transformed cells of the same species. These differences in ACC-dependent ethylene formation were stable and could not be modified by supplying auxin to the culture medium. In contrast, both the A6- and A66-transformed N. glutinosa cell lines showed a low capacity for ACC-dependent ethylene production. Thus, the low-ethylene-forming phenotype did not seem to be under direct control of the tms genes and appeared to be part of the host response to crown-gall transformation. All cell lines exhibiting the low-ethylene-forming phenotype grew as unorganized tissues in culture, whereas cell lines showing a high capacity to convert ACC to ethylene formed shoots. Thus, ACC-dependent ethylene formation may be useful for studying host factors important in determining tumor phenotype.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - NAA -naphthalencacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号