首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host functions required for replication of microvirid phage G13 DNA were investigated in vivo, using thermosensitive dna mutants of Escherichia coli. In dna+ bacteria, conversion of viral single-stranded DNA into double-stranded replicative form (stage I synthesis) was resistant to 150 microgram/ml of chloramphenicol or 200 microgram/ml of rifampicin. Although multiplication of G13 phage was severely inhibited at 42--43 degrees C even in dna+ host, considerable amount of parental replicative form was synthesized at 43 degrees C in dna+, dnaA or dnaE bacteria. In dnaB and dnaG mutants, however, synthesis of parental replicative form was severely inhibited at the restrictive temperature. Interestingly enough, stage I replication of G13 DNA was, unlike that of phiX174, dependent on host dnaC(D) function. Moreover, the stage I synthesis of G13 DNA in dnaZ was thermosensitive in nutrient broth but not in Tris/casamino acids/glucose medium. In contrast with the stage I replication, synthesis of G13 progeny replicative form was remarkably thermosensitive even in dna+ or dnA cells.  相似文献   

2.
Host dna functions involved in the replication of microvirid phage phiC DNA were investigated in vivo. Although growth of this phage was markedly inhibited even at 35-37 degrees C even in dna+ host, conversion of the infecting single-stranded DNA into the double-stranded parental replicative form (stage I synthesis) occurred normally at 43 degrees C in dna+, dnaA, dnaB, dnaC(D), and dnaE cells. In dnaG mutant, the stage I synthesis was severely inhibited at 43 degrees C but not at 30 degrees C. The stage I replication of phiC DNA was clearly thermosensitive in dnaZ cells incubated in nutrient broth. In Tris-casamino acids-glucose medium, however, the dnaZ mutant sufficiently supported synthesis of the parental replicative form. At 43 degrees C, synthesis of the progeny replicative form DNA (stage II replication) was significantly inhibited even in dna+ cells and was nearly completely blocked in dnaB or dnaC(D) mutant. At 37 degrees C, the stage II replication proceeded normally in dna+ bacteria.  相似文献   

3.
A progressive degradation of the parental viral strand label is observed upon infection of a Rep- mutant of Escherichia coli by 32P-labeled phiX174. Very little parental label remains in the RF (replicative form) by 47 min after infection. Concomitant with this degradation, replicative intermediates are formed which sediment at 21s, the rate of RF I (supercoiled-closed circular DNA), in a neutral sucrose gradient but which denature and sediment in alkaline gradients as single strands of unit size and larger. These denaturable 21s replicative intermediates have been shown previously to be RF molecules containing an elongated viral strand. Addition of chloramphenicol at 7 min after infection at 30 mug/ml, a concentration sufficient to block RF leads to SS (single strand) synthesis but not RF leads to RF synthesis in a wild-type host cell, reduced the amount of viral strand elongation but did not prevent viral strand degradation. The addition of chloramphenicol at 150 mug/ml at 7 min after infection totally prevents both the degradation of the parental label and the formation of the replicative intermediates with elongated tails. We infer that degradation of the viral strand requires the gene A-mediated nicking of the viral strand but not the concomitant elongation of the viral strand.  相似文献   

4.
Bacteriophage phiX174 DNA replication was examined in temperature-sensitive dnaB mutants of Escherichia coli C to determine which stages require the participation of the product of this host gene. The conversion of the infecting phage single-stranded DNA to the double-stranded replicative form (parental RF synthesis) is completely inhibited at the nonpermissive temperature (41 C) in two of the three dnaB mutants tested. The efficiency of phage eclipse and of phage DNA penetration of these mutant host cells at 41 C is the same as that of the parent host strain. The defect is most likely in the synthesis of the complementary strand DNA. The semiconservative replication of the double-stranded replicative form DNA (RF replication) is inhibited in all three host mutants after shifting from 30 to 41 C. Late in infection, the rate of progeny single-stranded phage DNA synthesis increases following shifts from 30 to 41 C. Approximately the same amounts of phage DNA and of infectious phage particles are made following the shift to 41 C as in the control left at 30 C. The simplest interpretation of our data is that the product of the host dnaB gene is required for phiX174 parental RF synthesis and RF replication, but is not directly involved in phage single-stranded DNA synthesis once it has begun. The possible significance of the synthesis of parental RF DNA at 41 C in one of the three mutants is discussed.  相似文献   

5.
Since parvoviruses apparently do not possess a DNA polymerase activity, one or more of the host cell DNA polymerases must be responsible for replicating the single-stranded DNA genome. We have focused on determining which polymerase, alpha, beta, or gamma (pol alpha, pol beta, or pol gamma, respectively), is responsible for the first step in bovine parvoviral DNA replication: conversion of the single-stranded DNA genome to a parental replicative form (RF). In this study, we used aphidicolin, a specific inhibitor of DNA pol alpha, to assay for the requirement of pol alpha activity in parental RF formation in vivo. Synchronized cell cultures were infected with bovine parvovirus with or without aphidicolin, and the products of viral replication were separated on agarose gels and identified by Southern blot analysis. We found that complete inhibition of viral DNA synthesis resulted when 20 microM aphidicolin was present throughout the infection. In addition, viral DNA synthesis was inhibited by as little as 1 microM aphidicolin, whereas lower concentrations (0.1 and 0.01 microM) resulted in partial inhibition of the replication process. Using 32P-labeled bovine parvovirus as the input virus we differentiated parental RF from daughter RF and progeny DNA synthesis. We conclude that DNA pol alpha is required for the production of RF during bovine parvovirus replication in vivo and that this requirement is most likely for the conversion of bovine parvovirus input single-stranded DNA to parental RF. These results do not rule out a possible role for DNA pol gamma in the first step, nor do they rule out a role for pol alpha or pol gamma in later stages of the replication cycle.  相似文献   

6.
Host functions required for replication of progeny double-stranded DNA of bacteriophage G4 were examined by using metabolic inhibitors and Escherichia coli dna mutants. In dna+ bacteria, synthesis of the progeny replicative form (RF) was relatively resistant to 30 microgram/ml of chloramphenicol, but considerably sensitive to 200 microgram/ml of rifampicin. The RF replication was severely inhibited by 50 microgram/ml of mitomycin C, 50 microgram/ml of nalidixic acid, or 200 microgram/ml of novobiocin. At 41 degrees C, synthesis of G4 progeny RF was distinctly affected in a dnaC(D) mutant and in a dnaG host. The progeny RF replication was prevented at 42 degrees C in a dnaE strain as well as in a dnaB mutant. In a dnaZ strain, the synthetic rate of the progeny RF was markedly reduced at 42 degrees C. At 43 degrees C, the rate of G4 progeny RF synthesis was reduced even in dna+ or dnaA bacteria, but significant amounts of the progeny RF were still synthesized in these hosts at the high temperature. In addition to five dna gene products, host rep function was essential for the RF replication.  相似文献   

7.
Gene IV mutants of bacteriophage S13 are known to be blocked in infectious replicative form (RF) DNA synthesis, producing only a small fraction of the RF formed by wild-type phage. This investigation shows that gene IV mutants form only parental RF and are blocked in the synthesis of any progeny RF, either infectious or noninfectious. This was determined by density labeling of RF in cells treated with mitomycin C to suppress host deoxyribonucleic acid (DNA) synthesis. RF synthesis was also studied in untreated cells, using methylated albumin columns to separate RF from host DNA. In this case it was also found that synthesis of progeny RF by gene IV mutants is negligible. It has been found by DNA-ribonucleic acid (RNA) hybridization experiments that gene IV mutants form at least as much or more messenger RNA than wild-type phage. Therefore, parental RF alone can form messenger RNA in appreciable amounts.  相似文献   

8.
The protein product of the rep gene of Escherichia coli is required for the replication of certain bacteriophage genomes (phi X174, fd, P2) and for the normal replication of E. coli DNA. We have used a specialized transducing phage, lambda p rep+, which complements the defect of rep mutants, to identify the rep protein. The rep protein has been purified from cells infected with lambda p rep+ phage; it has a molecular weight of about 70 000 and appears similar to the protein found in normal cells. Stimulation of phi X174 replicative form DNA synthesis in vitro was observed when highly purified rep protein was supplied to a cell extract derived from phi X-infected E. coli rep cells and supplemented with replicative form DNA. The purified protein has a single-stranded DNA-dependent ATPase activity and is capable of sensitizing duplex DNA to nucleases specific for single-stranded DNA. For this reason we propose the enzyme be called DNA helicase III. We infer that the rep protein uses the energy of hydrolysis of ATP to separate the strands of duplex DNA; the E. coli DNA binding protein need not be present. The rep3 mutant appeared to make a limited amount of active rep protein.  相似文献   

9.
The synthesis of bacteriophage G4 DNA was examined in temperature-sensitive dna mutants under permissive and nonpermissive conditions. The infecting single-stranded G4 DNA was converted to the parental replicative form (RF) at the nonpermissive temperature in infected cells containing a temperature sensitive mutation in the dnaA, dnaB, dnaC, dnaE, or dnaG gene. The presence of 30 mug of chloramphenicol or 200 mug of rifampin per ml had no effect on parental RF synthesis in these mutants. Replication of G4 double-stranded RF DNA occurred at a normal rate in dnaAts cells at the nonpermissive temperature, but the rate was greatly reduced in cells containing a temperature-sensitive mutation in the dnaB, dnaC, dnaE, or dnaG gene. RF DNA replicated at normal rates in revertants of these dna temperature-sensitive host cells. The simplest interpretation of these observations is that none of the dna gene products tested is essential for the synthesis of the complementary DNA strand on the infecting single-stranded G4 DNA, whereas the dnaB, dnaC, dnaE, (DNA polymerase III), and dnaG gene products are all essential for replication of the double-stranded G4 RF DNA. The alternate possibility that one or more of the gene products are actually essential for G4 parental RF synthesis, even though this synthesis is not defective in the mutant hosts, is also discussed.  相似文献   

10.
Mutation in several different cistrons of bacteriophage phi chi 174 blocks net progeny single-stranded DNA synthesis at the late period of infection (15). For the study of the functions of these cistrons in single-stranded DNA synthesis, asymmetric replication of replicative form DNA was examined at the late period of infection with amber mutants of these cistrons. While the normal, rapid process of asymmetric single-stranded viral DNA synthesis is blocked at the late period of these mutant infections, an asymmetric synthesis of the viral strand of replicative-form DNA is observed in this period, though at a reduced level, together with degradation of prelabeled viral strand. Some intermediate replicative-form molecules were also detected. Asymmetric synthesis of the viral strand of replicative-form DNA at the late period of phi chi infection is completely inhibited in the presence of a low concentration (35mug/ml) of chloramphenicol (which also blocks net single-stranded viral DNA synthesis). These results are discussed in terms of the possible role of the specific viral proteins for normal single-stranded DNA synthesis.  相似文献   

11.
A capsid mutant of bacteriophage phi chi 174 demonstrates altered requirements for the conversion of viral single-stranded DNA to double-stranded replicative form DNA. In the presence of puromycin at 42 C, wild-type phi chi 174 is unable to complete this replicative event, whereas phi chi ahb is able to do so. Furthermore, in contrast to wild-type phi chi 174, formation of phi chi ahb parental replicative form DNA is sensitive to rifampin under certain experimental conditions. These data suggest that the mutant capsid proteins of phi chi ahb influence the biosynthesis of phi chi ahb complementary strand DNA.  相似文献   

12.
Host functions for DNA replication of bacteriophage α3, a representative of group A microvirid phages, were studied using dna and rep mutants of Escherichia coli. In dna+ cells, conversion of phage α3 single-stranded DNA (SS) into the double-stranded replicative form (RF) was insensitive to 30–150 μg/ml of chloramphenicol, 200 μg/ml of rifampicin, 50 μg/ml of nalidixic acid, or 200 μg/ml of novobiocin. At 43°C, synthesis of the parental RF was inhibited in dnaG and dnaZ mutants, but not in dnaE and rep strains. Replication of phage α3 progeny RF was prevented by 50 μg/ml of mitomycin C (in hcr+ bacteria), 50 μg/ml of nalidixic acid or 200 μg/ml of novoviocin, but neither by 30 μg/ml of chloramphenicol nor by 200 μg/ml of rifampicin. Besides dnaG and dnaZ gene products, dnaE and rep functions were essential for the progeny RF synthesis. Host factor dependence of α3 was relatively simple and, in contrast with phages øX174 and G4, α3 did not require dnaB and dnaC(D) activities.  相似文献   

13.
Summary Using X174 replicative form (RF) DNA as an in vivo probe, we have investigated the coordinated action of the 53 exonuclease and polymerase activities of DNA polymerase I in order to understand better its physiological role. We constructed double mutants containing the rep mutation (the replication of X174 RF does not occur in rep mutants) together with a mutation affecting DNA polymerase I, either polA12 or polA546ex. Using these mutants, which are believed to be thermosensitive in the polymerase function or the 53 exonuclease function respectively, we studied the kinetics of nick translation at the permissive and non-permissive temperatures in vivo. The substrate was the X174 replicative form DNA nicked by the X174 gene A protein. E. coli rep polA546ex gave the lowest rate of nick translation, although the ability to perform nick translation, at least as measured by our assay, was still present. E. coli rep polA12 showed a similar low rate at the non-permissive temperature but a rate close to the wildtype level at the permissive temperature. Formation of the parental replicative form molecule in either strain was affected little, even at the restrictive temperature. Our results suggest that DNA polymerase I may not play a major role in ongoing DNA replication.  相似文献   

14.
In bacteriophage ?X174 infection, the net synthesis of replicative form DNA ceased between 15 and 20 min after infection. When 30 μg of chloramphenicol/ml was added, net RF synthesis, however, continued beyond the normal time and level of turn-off. Experiments with ?X174 mutants unable to synthesize single-stranded DNA showed that a protein synthesis was required for the cessation of net RF synthesis and the protein was synthesized between 10 and 15 min after infection.  相似文献   

15.
H Sakai  T Komano  G N Godson 《Gene》1987,53(2-3):265-273
Phage G4 origin of complementary DNA strand synthesis (oric) consists of three stable secondary loop structures. In a cloned 274-bp DNA fragment that is active as an ori in the filamentous phage cloning vector R199, insertion mutants have been constructed by introducing EcoRI and HindIII linkers at the base of loop III. The in vivo activity of these oric mutants (conversion of single-strand form to replicative form in the presence of rifampicin) was significantly reduced (50-70%) but not completely abolished. Nucleotide sequences and/or potential secondary structure of loop III centered at the AvaII site are therefore an important functional part of oric.  相似文献   

16.
The cultured pig kidney cells infected by the porcine parvovirus (PPV) produced the virions and viral DNA. The latter was used as a matrix to synthesize the double stranded DNA. The obtained preparation is more homogenic than the natural replicative form and was used for restriction analysis of porcine parvovirus genome and for molecular cloning of its fragment. The isolated recombinant plasmids contained the PstI-EcoRI fragment of PPV DNA, containing 70% of the viral genome. The restriction analysis of replicative PPV DNA isolated from the infected cells has resulted in finding of the replicative form containing a 300 bp deletion in the 5'-region of PPV genome.  相似文献   

17.
Five distinct DNA replicating intermediates have been separated from lysates of bacteriophage G4-infected cells pulse-labelled during the period of replicative form synthesis using propidium diiodide/caesium chloride gradients. These are a partially single-stranded theta structure that is labelled in both the viral and complementary DNA strands; partially single-stranded circles, some with an unfinished viral DNA strand (25%) and some with an unfinished complementary DNA strand (75%); replicative form II(RFII) and replicative form I(RFI) DNA labelled only in the complementary DNA strand. To explain the pulse-label data a model is proposed in which G4 replicative form replication takes place by a displacement mechanism in which synthesis of the new viral DNA strand displaces the old viral DNA strand as a single-stranded DNA loop (D-loop) and when the displacement reaches half way round the molecule (the origin of synthesis of the G4 viral and complementary DNA strands are on opposite sides of the genome, Martin &; Godson 1977) synthesis of the complementary DNA strand starts, but in the opposite direction. Strand separation of the parent helix runs ahead of DNA synthesis, releasing two partially single-stranded circles from the replicating structure which then complete their replication as free single-stranded DNA circles. No evidence was found to support a rolling circle displacement mechanism of G4 replicative form synthesis.  相似文献   

18.
Conversion of phi X174 viral, single-stranded circular DNA to the duplex replicative form (RF), previously observed with partially purified enzymes, has now been demonstrated with the participation of 12 nearly pure Escherichia coli proteins containing approximately 30 polypeptides. To complete the synthesis of a full length complementary strand, E. coli DNA polymerase I was needed to fill the short gap left by DNA polymerase III holoenzyme, and to remove the primer and replace it with DNA. Production of supercoiled RF required the further actions of E. coli DNA ligase and gyrase. Net synthesis of viral circles was obtained by coupling the formation of RF supercoils to the actions of the phi X174-encoded gene A protein and E. coli rep protein. Viral DNA circles produced from enzymatically synthesized supercoiled RF, serving as template-substrate, were indistinguishable from those produced from RF isolated from infected cells; synthetic RF and the viral circles generated from it by replication were as biologically active in transfection of spheroplasts as the forms obtained from infected cells and virions. The conversion of single-stranded circular DNA to RF is suggested here as a model for discontinuous synthesis of the lagging strand of the E. coli chromosome. The primosome, a complex of some of the replication proteins responsible for initiations of DNA chains, will be described elsewhere. Multiplication of RF supercoils, described in the succeeding paper, proceeds by a rolling-circle mechanism in which the synthesis of viral strands may have analogies to the continuous synthesis of the leading strand of the E. coli chromosome.  相似文献   

19.
Summary Amoebal thermosensitive mutants of Physarum polycephalum have been isolated after mutagenesis of the amoebal form by nitrosoguanidine treatment. About 70% of the independent thermosensitive amoebal mutants obtained were also thermosensitive in the plasmodial form. Two basic screening methods were applied at the same time to thermosensitive microplasmodia in order to detect strains defective in premitotic events, mitosis or chromosomal DNA synthesis. The first method consists in the determination of increase in protein. RNA and DNA with incubation time at the non-permissive temperature. It allowed the detection of four independent thermosensitive mutant strains, showing an early arrest in DNA synthesis. The second one is the quantification of the variations of the different nuclear types at the restrictive temperature. Two mutant strains presented very large nuclei, uni- or multinucleolate, very similar to those obtained after methyl benzimidazole carbamate treatment, suggesting a defect in one of the mitotic processes. One of these two mutant strains showed an early arrest in DNA synthesis at the restrictive temperature. These two screening procedures were completed by electron microscopic observation. This technique allowed the detection of intra-nuclear macrotubular crystal-like structures in a thermosensitive mutant showing a reduced DNA synthesis at the non-permissive temperature.  相似文献   

20.
Replication of bacteriophage M13 replicative forms is inhibited by rifampicin, an antibiotic that specifically inhibits the Escherichia coli RNA polymerase, and by nalidixic acid, an inhibitor of phage and bacterial DNA replication. Synthesis of the M13 complementary strand during RF3 replication was at least tenfold more sensitive to inhibition by rifampicin and by nalidixic acid than was that of the viral strand. Since M13 complementary strand synthesis is relatively insensitive to chloramphenicol, an inhibitor of protein synthesis, its inhibition by rifampicin suggests that complementary strands are initiated during RF replication by an RNA priming mechanism similar to that involved in parental RF formation. The nalidixic acid-sensitivity of complementary strand synthesis during RF replication clearly distinguishes this process from the nalidixic acid-resistant formation of the parental complementary strand in the conversion of the infecting single strand to RF.Production of progeny viral strands is indirectly affected by rifampiein in two ways. It prevents the conversion of supercoiled RF (RFI) to the open form (RFII), an essential step both in RF replication and in single-strand synthesis. In addition, rifampiein interferes with the expression of gene 5, an M13 gene function required for the accumulation of progeny viral strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号