首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toxoplasma gondii is an obligatory intracellular parasitic protozoan transmitted via the ingestion of raw, infected meat that causes congenital infections. In a cell-free environment, virulent Toxoplasma was strikingly resistant to H2O2. The activity of H2O2 or H2O2 generated by glucose-glucose oxidase against the resistant tachyzoite stage of pathogenic T. gondii was enhanced by adding KI and bovine lactoperoxidase (bLPO), referred to here as the bLPO system. Replacing bLPO (heme content, 90%) with recombinant bLPO (heme content, 6%) did not enhance the parasiticidal activity with KI and H2O2. These results indicated that heme contributed to the enzyme activity and resulted in the killing of tachyzoites of T. gondii. Tachyzoites treated with the bLPO system also lost the ability to penetrate the mouse fibroblast cell line (NIH/3T3), and could be killed intracellularly after exposure by bLPO to a mouse macrophage cell line (J774A.1). These findings suggested that toxicity was mediated through small amounts of H2O2 generated by phagocytic events in naive macrophages, and by the peroxidative activity of bLPO. Our observations suggest that the bLPO system could help prevent the development of Toxoplasmosis in humans after ingesting raw, infected meat.  相似文献   

2.
Lactoperoxidase (LPO) is a 78 kDa heme-containing oxidation–reduction enzyme present in milk, found in physiological fluids of mammals. LPO has an antimicrobial activity, and presumably contribute to the protective functions of milk against infectious diseases. In this study, recombinant vaccinia virus expressing bovine LPO (vv/bLPO) was constructed. In rabbit kidney (RK13) cells infected with vv/bLPO, recombinant bLPO was detected in both cell extracts and culture supernatants. Tunicamycin treatment decreased the molecular weight of recombinant bLPO, indicating that recombinant bLPO contains a N-linked glycosylation site. The replication of recombinant vaccinia viruses expressing bovine lactoferrin (vv/bLF) at a multiplicity of infection (moi) of 5 plaque-forming units (PFU)/cell was inhibited by antiviral activity of recombinant bLF, suggesting that vv/bLF has an antiviral effect against vaccinia virus. On the other hand, the replication of vv/bLPO at a moi of 5 PFU/cell was not inhibited by antiviral activity of recombinant bLPO, indicating that this recombinant virus could be used as a suitable viral vector. These results indicate that a combination of bLPO and vaccinia virus vector may be useful for medical and veterinary applications in vivo.  相似文献   

3.
The effects of iron deficiency on heme biosynthesis in Rhizobium japonicum were examined. Iron-deficient cells had a decreased maximum cell yield and a decreased cytochrome content and excreted protoporphyrin into the growth medium. The activities of the first two enzymes of heme biosynthesis, delta-aminolevulinic acid synthase (EC 2.3.1.37) and delta-aminolevulinic acid dehydrase (EC 4.2.1.24), were diminished in iron-deficient cells, but were returned to normal levels upon addition of iron to the cultures. The addition of iron salts, iron chelators, hemin, or protoporphyrin to cell-free extracts did not affect the activity of these enzymes. The addition of levulinic acid to iron-deficient cultures blocked protoporphyrin excretion and also resulted in high delta-aminolevulinic acid synthase and delta-aminolevulinic acid dehydrase activities. These results suggest the possibility that rhizobial heme biosynthesis in the legume root nodule may be affected by the release of iron from the host plant to the bacteroids.  相似文献   

4.
In analogy with studies previously reported for myeloperoxidase (Kooter, I. M.; Moguilevsky, N.; Bollen, A.; Van der Veen, L. A.; Otto, C.; Dekker, H. L.; Wever, R. J. Biol. Chem. 1999, 274, 26794), we examined for bovine lactoperoxidase the effect of mutation of Asp225 and Glu375, the residues thought to be responsible for the covalent binding of the heme group to the apoprotein. Starting from the plasmid encoding rbLPO (Watanabe, S.; Varsalona, F.; Yoo, Y.; Guillaume, J. P.; Bollen, A.; Shimazaki, K.; Moguilevsky, N. FEBS Letters 1998, 441, 476), which was engineered to carry mutations in correspondence of those residues, the mutants Asp225Val and Glu375Gln were expressed in CHO cells and their products purified and characterized. Unequivocal evidence about the existence of ester linkages as well as their relative contribution to the specific spectroscopic and catalytic properties of bLPO is here discussed.  相似文献   

5.
Acquisition of iron from transferrin regulates reticulocyte heme synthesis   总被引:6,自引:0,他引:6  
Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59Fe from [59Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [59Fe]transferrin. Also, Fe-SIH stimulates [2-14C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59Fe incorporation into heme from either [59Fe]transferrin or [59Fe]SIH but does reverse the inhibition of 59Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes.  相似文献   

6.
The hemoprotein indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in mammalian tryptophan metabolism. It has received considerable attention in recent years, particularly due to its role in the pathogenesis of many diseases. Here, we report attempts to improve soluble expression and purification of hexahistidyl-tagged recombinant human IDO from Escherichia coli (EC538, pREP4, and pQE9-IDO). Significant formation of inclusion bodies was noted at the growth temperature of 37 degrees C, with reduced formation at 30 degrees C. The addition of the natural biosynthetic precursor of protoporphrin IX, delta-aminolevulinic acid (ALA), coupled with optimisation of IPTG induction levels during expression at 30 degrees C and purification by nickel-agarose and size exclusion chromatography, resulted in protein with 1 mol of heme/mol of protein and a specific activity of 160 micromol of kynurenine/h/mg of protein (both identical to native human IDO). The protein was homogeneous in terms of electrophoretic analysis. Yields of soluble protein (3-5 mg/L of bacterial culture) and heme content are greater than previously reported.  相似文献   

7.
A gene coding for lipase-solubilized bovine liver microsomal cytochrome b5 has been synthesized, expressed in Escherichia coli, and mutated at functionally critical residues. Characterization of the recombinant protein revealed that it has a reduction potential that is approximately 17 mV lower than that of authentic wild-type protein at pH 7 (25 degrees C). Structural studies determined that the recombinant protein differed in sequence from authentic wild-type cytochrome b5 owing to three errors in amidation status in the published sequence for the protein on which the gene synthesis was based. The structural origin of the lower reduction potential exhibited by the triple mutant has been investigated through X-ray crystallographic determination of the three-dimensional structure of this protein and is attributed to the presence of Asp-57 within 3.3 A of heme vinyl-4 in the mutant. In addition, the model developed by Argos and Mathews [Argos, P., & Mathews, F.S. (1975) J. Biol. Chem. 250, 747] for the change in cytochrome b5 oxidation state has been studied through mutation of Ser-64 to Ala. In this model, Ser-64 is postulated to stabilize the oxidized protein through H-bonding interactions with heme propionate-7 that orients this propionate group 6.2 A from the heme iron. Spectroelectrochemical studies of a mutant in which Ser-64 has been changed to an alanyl residue demonstrate that this protein has a reduction potential that is 7 mV lower than that of the wild-type protein; moreover, conversion of the heme propionate groups to the corresponding methyl esters increases the potential by 67 mV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Serratia marcescens hemTUV genes encoding a potential heme permease were cloned in Escherichia coli recombinant mutant FB827 dppF::Km(pAM 238-hasR). This strain, which expresses HasR, a foreign heme outer membrane receptor, is potentially capable of using heme as an iron source. However, this process is invalidated due to a dppF::Km mutation which inactivates the Dpp heme/peptide permease responsible for heme, dipeptide, and delta-aminolevulinic (ALA) transport through the E. coli inner membrane. We show here that hemTUV genes complement the Dpp permease for heme utilization as an iron source and thus are functional in E. coli. However, hemTUV genes do not complement the Dpp permease for ALA uptake, indicating that the HemTUV permease does not transport ALA. Peptides do not inhibit heme uptake in vivo, indicating that, unlike Dpp permease, HemTUV permease does not transport peptides. HemT, the periplasmic binding protein, binds heme. Heme binding is saturable and not inhibited by peptides that inhibit heme uptake by the Dpp system. Thus, the S. marcescens HemTUV permease and, most likely, HemTUV orthologs present in many gram-negative pathogens form a class of heme-specific permeases different from the Dpp peptide/heme permease characterized in E. coli.  相似文献   

10.
11.
Cultures of Rhizobium japonicum were grown with vigorous aeration to stationary phase and were then incubated under restricted aeration for several days. Under these "microaerobic" conditions, cellular heme content increased 10-fold, and visible amounts of porphyrins were released into the culture medium. The two predominant porphyrins produced were identified, on the basis of their spectrophotometric and chromatographic properties, as protoporphyrin and coproporphyrin. The cytochrome complement of microaerobic cells partially resembled that of the symbiotic bacteria in that cytochromes alpha-alpha3 were absent and a CO-binding cytochrome 552 was present. During the period of restricted aeration, at the time that the heme content was increasing, there was a similar 10-fold increase in the activities of the first two enzymes of heme biosynthesis, delta-aminolevulinic acid synthase and delta-aminolevulinic acid dehydrase. However, during the same period, the activity of succinyl thiokinase (an enzyme that is required in large amounts whether or not heme is being produced) increased only twofold. These results suggest that reduced oxygen tension may play a role in inducing heme synthesis necessary for leghemoglobin formation and bacterial differentiation in soybean root nodules.  相似文献   

12.
Expression of recombinant hemoproteins in Escherichia coli is often limited because a vast majority of the protein produced lacks the heme necessary for function. This is compounded by the fact that standard laboratory strains of E. coli have a limited capacity to withdraw heme from the extracellular environment. We are developing a new tool designed to increase the heme content of our proteins of interest by simply supplementing the expression medium with low concentrations of hemin. This hemoprotein expression (HPEX) system is based on plasmids (pHPEX1-pHPEX3) that encode an outermembrane-bound heme receptor (ChuA) from E. coli O157:H7. This heme receptor, and others like it, confers on the host the ability to more effectively internalize exogenous heme. Transformation of a standard laboratory E. coli protein expression strain (BL-21 [DE3]) with the pHPEX plasmid led to the expression of a new protein with the appropriate molecular weight for ChuA. The receptor was functional as demonstrated by the ability of the transformant to grow on iron-deficient media supplemented with hemin, an ability that the unmodified expression strain lacked. Expression of our proteins of interest, catalase-peroxidases, using this system led to a dramatic and parallel increase in heme content and activity. On a per-heme basis, the spectral and kinetic properties of HPEX-derived catalase-peroxidase were the same as those observed for catalase-peroxidases expressed in standard E. coli-based systems. We suggest that the pHPEX plasmids may be a useful addition to other E. coli expression systems and may help address a broad range of problems in hemoprotein structure and function.  相似文献   

13.
The present study characterizes the unfolding and folding processes of recombinant manganese peroxidase. This enzyme contains five disulfide bonds, two calcium ions, and one heme prosthetic group. Circular dichroism in the far UV was used to monitor global changes of the protein secondary structure, whereas UV-visible spectroscopy of the Soret band provided information about local changes in the heme cavity. The effects of reducing agents, oxidizing agents, and denaturants on this process were investigated. In addition to affecting the secondary structure content, these factors also affect the binding of the heme and the calcium ions, both of which have a significant effect on the folding process. Our results also show that denaturants induce irreversible changes, which are most likely due to the inability of the denatured protein to rebind either calcium or the heme. Breaking of disulfide bonds by 30 mM dithiothreitol causes complete unfolding of recombinant manganese peroxidase. The unfolding process was also studied at low and high pH, where the protein reaches the final unfolded state through two different intermediate states. The data also indicate that only the acidic folding-unfolding process is reversible. Our results indicate a complex synergistic relationship between the secondary structure content, the tertiary structure arrangement, and the binding of the heme and the calcium ions and disulfide bridge formation.  相似文献   

14.
15.
The in vivo effect of the known herbicide, paraquat, on both hepatic oxidative stress and heme metabolism was studied. A marked increase in lipid peroxidation and a decrease in reduced glutathione (GSH) content were observed 1 h after paraquat administration. The activity of liver antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase was decreased 3 h after paraquat injection. Heme oxygenase-1 induction started 9 h after treatment, peaking at 15 h. delta-aminolevulinic acid synthase induction occurred once heme oxygenase had been enhanced, reaching its maximum (1.5-fold of control) at 16 h. delta-aminolevulinic acid dehydratase activity was 40% inhibited at 3 h showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of alpha-tocopherol (35 mmol/kg body weight) 2 h before paraquat treatment entirely prevented the increase in thiobarbituric acid reactive substances (TBARS) content, the decrease in GSH levels as well as heme oxygenase-1 and delta-aminolevulinic acid synthase induction. This study shows that oxidative stress produced by paraquat leads to an increase in delta-aminolevulinic acid synthase and heme oxygenase-1 activities, indicating that the herbicide affects both heme biosynthesis and degradation.  相似文献   

16.
Some late complications of diabetes are associated with alterations in the structure and function of proteins due to glycation and free radicals generation. Aspirin inhibits protein glycation by acetylation of free amino groups. In the diabetic status, it was demonstrated that several enzymes of heme pathway were diminished. The aim of this work has been to investigate the in vivo effect of short and long term treatment with acetylsalicylic acid in streptozotocin induced diabetic mice. In both treatments, the acetylsalicylic acid prevented delta-aminolevulinic dehydratase and porphobilinogen deaminase inactivation in diabetic mice and blocked the accumulation of lipoperoxidative aldehydes. Catalase activity was significantly augmented in diabetic mice and the long term treatment with aspirin partially reverted it. We propose that oxidative stress might play an important role in streptozotocin induced diabetes. Our results suggest that aspirin can prevent some of the late complications of diabetes, lowering glucose concentration and probably inhibiting glycation by acetylation of protein amino groups.  相似文献   

17.
Oxidative stress and the generation of reactive oxygen species (ROS) have been implicated in the pathogenesis of cellular damage. These events have usually been reported in terms of oxidation of a reporter molecule such as 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA). Treatment of HeLa cells with hemin or metalloporphyrins resulted in a rapid oxidation of DCFH in a time- and dose-dependent manner. This oxidation was inhibited by treatment of the cells with a large amount of superoxide dismutase and catalase, which is different from observations that these enzymes had no effect on the induction of heme oxygenase-1, a stress-induced protein, in hemin-treated cells. To examine the possibility that the oxidation of DCFH is independent of the generation of ROS, the oxidation was measured using hemoglobin-synthesizing erythroleukemia K562 cells. When K562 cells were treated with delta-aminolevulinic acid, a precursor of heme, oxidation of DCFH increased depending on the heme content in cells. Then DCFH-DA was oxidized directly with heme, hemoglobin, myoglobin and cytochrome c. These results suggest that oxidation of DCFH is not always related to the generation of ROS but may be related to heme content in cells.  相似文献   

18.
Primary chick embryo liver cells, which had been previously cultured in Eagle's medium containing 10% fetal bovine serum, had the same characteristics (inducibility of delta-aminolevulinic acid synthetase and synthesis of plasma proteins) when cultured in a completely defined Ham F-12 medium containing insulin. Insulin was active in the physiological range; 2 to 3 nM were sufficient to increase the induced delta-aminolevulinic acid synthetase to 50% of the maximum effect obtained with a saturating amount of insulin (30 nM). Serum albumin added to the Ham-insulin medium caused protoporphyrin but not uroporphyrin, generated in the cultured liver cells, to be transferred to the medium. As little as 10 mug of human serum albumin per ml caused the transfer of one-half of the protoporphyrin. Bovine serum albumin was only about 1/30 as effective. A spectrofluorometric method and calculation procedure are described for quantitation, in the nanomolar range, of total porphyrin and the percentage of this that is protoporphyrin or uroporphyrin plus coproporphyrin. The method is satisfactory for the measurement of porphyrins generated by 1 mg wet weight of cells in culture in 20 hours. Heme (0.1 to 0.3 muM), when added to the medium as hemin, human hemoglobin, or chicken hemoglobin, specifically inhibited the induction of delta-aminolevulinic acid synthetase by one-half. This high sensitivity for heme was observed under conditions in which the defined medium was free of serum and where a chelator of iron was added to the medium to diminish the synthesis of endogenous heme. Heme endogenously generated from exogenous delta-aminolevulinic acid also inhibited the induction; chelators of iron prevented this inhibition. The migration of heme from the mitochondria to other portions of the cell is discussed in terms of the affinities of different proteins for heme. A hypothesis of a steady state of liver heme metabolism, controlled by the concentration of "free" heme, is presented. The different effects of heme on the synthesis of a number of proteins are summarized.  相似文献   

19.
1. Growth rates, morphology, plasma protein synthesis and the level of heme pathway enzymes were examined in six sublines of HepG2 cells obtained from various laboratories. 2. Five sublines represented by G2a display the known characteristics of HepG2 cell type, including morphology, plasma protein synthesis and an increase in delta-aminolevulinic acid (ALA) dehydratase activities in response to Me2SO treatment. 3. In contrast, cells of the G2f subline failed to secrete significant quantities of plasma proteins. There was also no increase in ALA dehydratase activity following Me2SO treatment. These findings suggest that G2f cells represent a variant of HepG2 cells with an altered phenotype.  相似文献   

20.
In the preceding paper (Ross, E., and Schatz, G. (1976) J. Biol. Chem. 251, 1991-1996) yeast cytochrome c1 was characterized as a 31,000 dalton polypeptide with a covalently bound heme group. In order to determine the site of translation of this heme-carrying polypeptide, yeast cells were labeled with [H]leu(be under the following conditions: (a) in the absence of inhibitors, (b) in the presence of acriflavin (an inhibitor of mitochondrial translation), or (c) in the presence of cycloheximide (an inhibitor of cytoplasmic translation). The incorporation of radioactivity into the hemeprotein was measured by immunoprecipitating it from mitochondrial extracts and analyzing it by dodecyl sulfate-polyacrylamide gel electrophoresis. Label was incorporated into the cytochrome c1 apoprotein only in the presence of acriflavin or in the absence of inhibitor, but not in the presence of cycloheximide. Cytochrome c1 is thus a cytoplasmic translation product. This conclusion was further supported by the demonstration that a cytolasmic petite mutant lacking mitochondrial protein synthesis still contained holocytochrome c1 that was indistinguishable from cytochrome c1 of wild type yeast with respect to molecular weight, absorption spectru, the presence of a covalently bound heme group, and antigenic properties. Cytochrome c1 in the mitochondria of the cytoplasmic petite mutant is firmly bound to the membrane, and its concentration approaches that typical of wild type mitochondria. However, its lability to proteolysis appeared to be increased. A mitochondrial translation product may thus be necessary for the correct conformation or orientation of cytochrome c1 in the mitochondrial inner membrane. Accumulation of cytochrome c1 protein in mitochondria is dependent on the abailability of heme. This was shown with a delta-aminolevulinic acid synthetase-deficient yeast mutant which lacks heme and any light-absorbing peaks attributable to cytochromes. Mitochondria from mutant cells grown without added delta-aminolevulinic acid contained at least 20 times less protein immunoprecipitable by cytochrome c1-antisera than mitochondria from cells grown in the presence of the heme precursor. Similarly, the respiration-deficient promitochondria of anaerobically grown wild type cells are almost completely devoid of material cross-reacting with cytochrome c1-antisera. A 105,000 X g supernatant of aerobically grown wild type cells contains a 29,000 dalton polypeptide that is precipitated by cytochrome c1-antiserum but not by nonimmune serum. This polypeptide is also present in high speed supernatants from the heme-deficient mutant or from anaerobically gorwn wild type cells. The possible identity of this polypeptide with soluble apocytochrome c1 is being investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号