首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectral balance and UV-B sensitivity of soybean: a field experiment   总被引:12,自引:5,他引:7  
Soybean [Glycine max (L.) Merr.] cultivar Essex was grown and tested for sensitivity to UV-B radiation (280–320 nm) under different combinations of UV-A (320–400 nm) and PFD (400–700 nm) radiation in four simultaneous field experiments. The radiation conditions were effected with combinations of filtered solar radiation and UV-B and UV-A lamps electronically modulated to track ambient radiation. Significant UV-B-caused decreases in total aboveground production and growth were seen only when PFD and UV-A were reduced to less than half their flux in sunlight. When PFD was low, UV-A appeared to be particularly effective in mitigating UV-B damage. However, when PFD was high, substantial UV-A did not appear to be required for UV-B damage mitigation. Leaf chlorophyll fluorescence did not indicate photosynthetic damage under any radiation combination. With UV-B, leaves in all experiments exhibited increased UV-absorbing pigments and decreased whole-leaf UV transmittance. Results of these field experiments indicate difficulties in extrapolating from UV-B experiments conducted in glasshouse or growth cabinet conditions to plant UV-B sensitivity in the field. Implications for UV radiation weighting functions in evaluating atmospheric ozone reduction are also raised.  相似文献   

2.
The loss of stratospheric ozone and the accompanying increase in solar UV flux have led to concerns regarding decreases in global microbial productivity. Central to understanding this process is determining the types and amounts of DNA damage in microbes caused by solar UV irradiation. While UV irradiation of dormant Bacillus subtilis endospores results mainly in formation of the "spore photoproduct" 5-thyminyl-5,6-dihydrothymine, genetic evidence indicates that an additional DNA photoproduct(s) may be formed in spores exposed to solar UV-B and UV-A radiation (Y. Xue and W. L. Nicholson, Appl. Environ. Microbiol. 62:2221-2227, 1996). We examined the occurrence of double-strand breaks, single-strand breaks, cyclobutane pyrimidine dimers, and apurinic-apyrimidinic sites in spore DNA under several UV irradiation conditions by using enzymatic probes and neutral or alkaline agarose gel electrophoresis. DNA from spores irradiated with artificial 254-nm UV-C radiation accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, while DNA from spores exposed to artificial UV-B radiation (wavelengths, 290 to 310 nm) accumulated only cyclobutane pyrimidine dimers. DNA from spores exposed to full-spectrum sunlight (UV-B and UV-A radiation) accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, whereas DNA from spores exposed to sunlight from which the UV-B component had been removed with a filter ("UV-A sunlight") accumulated only single-strand breaks and double-strand breaks. Apurinic-apyrimidinic sites were not detected in spore DNA under any of the irradiation conditions used. Our data indicate that there is a complex spectrum of UV photoproducts in DNA of bacterial spores exposed to solar UV irradiation in the environment.  相似文献   

3.
The effects of solar ultraviolet (UV)-B and UV-A radiation on the potential efficiency of photosystem II (PSII) in leaves of tropical plants were investigated in Panama (9°N). Shade-grown tree seedlings or detached sun leaves from the outer crown of mature trees were exposed for short periods (up to 75 min) to direct sunlight filtered through plastic or glass filters that absorbed either UV-B or UV-A+B radiation, or transmitted the complete solar spectrum. Persistent changes in potential PSII efficiency were monitored by means of the dark-adapted ratio of variable to maximum chlorophyll a fluorescence. In leaves of shade-grown tree seedlings, exposure to the complete solar spectrum resulted in a strong decrease in potential PSII efficiency, probably involving protein damage. A substantially smaller decline in the dark-adapted ratio of variable to maximum chlorophyll a fluorescence was observed when UV-B irradiation was excluded. The loss in PSII efficiency was further reduced by excluding both UV-B and UV-A light. The photoinactivation of PSII was reversible under shade conditions, but restoration of nearly full activity required at least 10 d. Repeated exposure to direct sunlight induced an increase in the pool size of xanthophyll cycle pigments and in the content of UV-absorbing vacuolar compounds. In sun leaves of mature trees, which contained high levels of UV-absorbing compounds, effects of UV-B on PSII efficiency were observed in several cases and varied with developmental age and acclimation state of the leaves. The results show that natural UV-B and UV-A radiation in the tropics may significantly contribute to photoinhibition of PSII during sun exposure in situ, particularly in shade leaves exposed to full sunlight.  相似文献   

4.
Abstract The relative role of components of solar radiation (UV-B, UV-A, and photosynthetically active radiation) as well as the effect of simulated sunlight upon the physiological state of Escherichia coli in fresh water were evaluated. Simulated solar radiation had a sublethal effect on E. coli populations in a short-time exposure by provoking loss of culturability and the formation of viable but nonculturable cells. Prolonged exposure increased the damage to cells but cellular integrity was never affected. However, important differences between the way the sunlight components acted were detected. After photosynthetically active radiation (PAR) exposure, cells remained metabolically active but only 10% of the cells were culturable. When cells were exposed to UV-A, the culturable fraction was similar to the one obtained after PAR irradiation, although formation of viable but nonculturable cells was not observed. For UV-B radiation short-time exposures (6 h) were enough to provoke loss of culturability and a reduction in activity similar to that of simulated sunlight exposed cells. The effect of simulated solar radiation on E. coli cells was mainly attributable to shorter wavelengths, but a synergistic interaction of the UV-B, UV-A and PAR components was detected.  相似文献   

5.
About 95% of the ultraviolet (UV) photons reaching the Earth’s surface are UV-A (315–400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280–315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and “UV-B photoreceptor” UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8’s role as a UV-B/UV-Asw photoreceptor in sunlight.

In sunlight, UVR8 mediates the perception of both UV-B and short-wavelength UV-A radiation with its sensitivity moderated by blue light perceived through cryptochromes.  相似文献   

6.
The near-UV component of sunlight decreased culturability of the leaf epiphyte and plant pathogen Pseudomonas syringae. Exposure of the wild-type cells for 4 h to UV-A and UV-B in sunlight was ten fold more detrimental than exposure to sunlight with just UV-A. Sensitivity to UV-A especially increased in a mutant of P. syringae lacking the global regulatory sigma factor, RpoS. No RpoS-mutant cells were culturable after 4 h of exposure to near-UV sunlight. These findings suggest that both UV-A and UV-B wavelengths cause damage to the bacterial cell and that the RpoS protein regulates protective measures for the leaf-associated pseudomonad. Received: 6 February 2001 / Accepted: 3 April 2001  相似文献   

7.
The loss of stratospheric ozone and the accompanying increase in solar UV flux have led to concerns regarding decreases in global microbial productivity. Central to understanding this process is determining the types and amounts of DNA damage in microbes caused by solar UV irradiation. While UV irradiation of dormant Bacillus subtilis endospores results mainly in formation of the “spore photoproduct” 5-thyminyl-5,6-dihydrothymine, genetic evidence indicates that an additional DNA photoproduct(s) may be formed in spores exposed to solar UV-B and UV-A radiation (Y. Xue and W. L. Nicholson, Appl. Environ. Microbiol. 62:2221–2227, 1996). We examined the occurrence of double-strand breaks, single-strand breaks, cyclobutane pyrimidine dimers, and apurinic-apyrimidinic sites in spore DNA under several UV irradiation conditions by using enzymatic probes and neutral or alkaline agarose gel electrophoresis. DNA from spores irradiated with artificial 254-nm UV-C radiation accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, while DNA from spores exposed to artificial UV-B radiation (wavelengths, 290 to 310 nm) accumulated only cyclobutane pyrimidine dimers. DNA from spores exposed to full-spectrum sunlight (UV-B and UV-A radiation) accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, whereas DNA from spores exposed to sunlight from which the UV-B component had been removed with a filter (“UV-A sunlight”) accumulated only single-strand breaks and double-strand breaks. Apurinic-apyrimidinic sites were not detected in spore DNA under any of the irradiation conditions used. Our data indicate that there is a complex spectrum of UV photoproducts in DNA of bacterial spores exposed to solar UV irradiation in the environment.  相似文献   

8.
Bacterial endospores are 1 to 2 orders of magnitude more resistant to 254-nm UV (UV-C) radiation than are exponentially growing cells of the same strain. This high UV resistance is due to two related phenomena: (i) DNA of dormant spores irradiated with 254-nm UV accumulates mainly a unique thymine dimer called the spore photoproduct (SP), and (ii) SP is corrected during spore germination by two major DNA repair pathways, nucleotide excision repair (NER) and an SP-specific enzyme called SP lyase. To date, it has been assumed that these two factors also account for resistance of bacterial spores to solar UV in the environment, despite the fact that sunlight at the Earth's surface consists of UV-B, UV-A, visible, and infrared wavelengths of approximately 290 nm and longer. To test this assumption, isogenic strains of Bacillus subtilis lacking either the NER or SP lyase DNA repair pathway were assayed for their relative resistance to radiation at a number of UV wavelengths, including UV-C (254 nm), UV-B (290 to 320 nm), full-spectrum sunlight, and sunlight from which the UV-B portion had been removed. For purposes of direct comparison, spore UV resistance levels were determined with respect to a calibrated biological dosimeter consisting of a mixture of wild-type spores and spores lacking both DNA repair systems. It was observed that the relative contributions of the two pathways to spore UV resistance change depending on the UV wavelengths used in a manner suggesting that spores irradiated with light at environmentally relevant UV wavelengths may accumulate significant amounts of one or more DNA photoproducts in addition to SP. Furthermore, it was noted that upon exposure to increasing wavelengths, wild-type spores decreased in their UV resistance from 33-fold (UV-C) to 12-fold (UV-B plus UV-A sunlight) to 6-fold (UV-A sunlight alone) more resistant than mutants lacking both DNA repair systems, suggesting that at increasing solar UV wavelengths, spores are inactivated either by DNA damage not reparable by the NER or SP lyase system, damage caused to photosensitive molecules other than DNA, or both.  相似文献   

9.
Jenkins GJ  Parry JM 《BioTechniques》2000,29(6):1318-20, 1323-6
We have applied a PCR-based methodology to study the DNA damage induced by UV-A, UV-B and sunlight itself. Our results, employing a cell-free system, indicate that UV-B (310 nm) is approximately 30-fold more potent at inhibiting DNA synthesis than UV-A (365 nm). We were also able to show that 20 min of sunlight exposure on a summer day induced DNA damage capable of inhibiting DNA synthesis. Hence, this methodology has a sensitivity suitable to detect biologically relevant doses of UV light. In addition, we propose that this technique may be suitable to assess the relative photoprotection of commercially available sunscreens. We present here preliminary data on the photoprotection afforded by the topical application of sunscreen. This photoprotection was measured by a reduction in the subsequent UV-B- and UV-A-induced DNA damage when sunscreen was applied. Our results demonstrate that the particular sunscreen tested was effective against both UV-B and UV-A. However, the estimated photoprotective factor of the sunscreen (against both UV-A and UV-B) was approximately tenfold less than the stated Sun Protection Factor (SPF) of 25. This methodology may also be useful in identifying new photoprotective agents by assessing their relative value as UV-B and UV-A absorbing agents.  相似文献   

10.
Abstract: The effects of solar ultraviolet radiation (UV) on carbon uptake, oxygen evolution and motility of marine phytoplankton were investigated in coastal waters at Kristineberg Marine Research Station on the west coast of Sweden (58° 30'N, 11° 30'E). The mean irradiances at noon above the water surface during the investigation period were: photosynthetic active radiation (PAR, 400–700 nm) 1670 μmol m−2 s−1; ultraviolet-A radiation (UV-A, 320–400 nm) 35.9 W m−2 and ultraviolet-B radiation (UV-B, 280–320 nm) 1.7 W m−2. UV-B radiation was much more attenuated with depth in the water column than were PAR and UV-A radiation. UV-B radiation could not be detected at depths greater than 100–150 cm. Inhibition of carbon uptake by UV-A and UV-B in natural phytoplankton populations was greatest at 50 cm depth and the effects of UV-B were greater than those of UV-A. At depths greater than 50 cm there was almost no effect of ultraviolet radiation on carbon uptake. PAR, UV-A and UV-B decreased oxygen evolution by the dinoflagellate Prorocentrum minimum . Inhibition of oxygen evolution was greater after 4 h than 2 h but it was not possible to distinguish the negative effects of the different light regimes. The motility of P. minimum was not affected by PAR, UV-A and UV-B. The importance of exposure of phytoplankton to different light regimes before being exposed to natural solar radiation is discussed.  相似文献   

11.
12.
Irradiation of mammalian cells with ultraviolet-B radiation (UV-B) triggers the activation of a group of stress-activated protein kinases known as c-Jun NH(2)-terminal kinases (JNKs). UV-B activates JNKs via UV-B-induced ribotoxic stress. Because oxidative stress also activates JNKs, we have addressed the question of whether the ribotoxic and the oxidative stress responses are mechanistically similar. The pro-oxidants sodium arsenite, cadmium chloride, and hydrogen peroxide activated JNK1 with slow kinetics, whereas UV-B potentiated the activity of JNK1 rapidly. N-acetyl cysteine (a scavenger of reactive oxygen intermediates) abolished the ability of all oxidative stressors tested to activate JNK1, but failed to affect the activation of JNK1 by UV-B or by another ribotoxic stressor, the antibiotic anisomycin. In contrast, emetine, an inhibitor of the ribotoxic stress response, was unable to inhibit the activation of JNK1 by oxidative stressors. Although UV-A and long wavelength UV-B are the spectral components of the ultraviolet solar radiation that cause significant oxidative damage to macromolecules, the use of a filter to eliminate the radiation output from wavelengths below 310 nm abolished the activation of JNK1 by UV. Our results are consistent with the notion that UV-B and oxidative stressors trigger the activation of JNK1 through different signal transduction pathways.  相似文献   

13.
《Journal of plant physiology》2014,171(16):1545-1553
The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant.  相似文献   

14.
Gartia  S.  Pradhan  M.K.  Joshi  P.N.  Biswal  U.C.  Biswal  B. 《Photosynthetica》2003,41(4):545-549
In clusterbean leaves UV-B radiation caused a reduction in contents of chlorophylls and carotenoids and in the efficiency of photosystem 2 photochemistry. The degree of damage was reduced when UV-A accompanied the UV-B radiation. This indicates the counteracting effect of UV-A radiation against UV-B-induced impairment.  相似文献   

15.
Effects of ambient solar UV radiation in the field and of artifical UV irradiation under controlled laboratory conditions were studied with natural phytoplankton populations from Helgoland, German Bight, North Sea. The pattern of pigments varied after UV-A or UV-B plus a low dose of UV-A radiation: UV-A usually induced a stimulation of pigment biosynthesis; whereas UV-B plus UV-A led to a reduction of the contents of chlorophyll a, diadinoxanthin, fucoxanthin, peridinin and an unknown carotenoid; content of diatoxanthin was significantly enhanced. The damaging effect on nitrogen assimilation by UV was more pronounced after artificial UV-B plus UV-A irradiance compared to the influence of ambient solar UV under field conditions. The uptake of inorganic nitrogen was dependent on the dose and exposure time of UV radiation as well as on the species composition. The uptake of 15N-nitrate by natural phytoplankton collected in spring was more sensitive to UV irradiation than the assimilation of 15N-ammonium. UV-A radiation with a small part of shorter wavelengths at 315 nm (Philips-lamps in conjunction with the cut-off filter WG 320) caused a reduction of up to 12% whereas a stimulation of the 15NH4+ uptake was observed after exposure to UV-A without any UV-B (Philips lamps TL 60W/09N). Pattern of 15N-incorporation into free amino acids and pool sizes varied in dependence on the applied nitrogen compound and on the irradiation conditions. The impact of UV radiation on the pattern of 15N-Iabelled free amino acids and the pool sizes was different. 15N enrichment into all the tested amino acids was reduced after 5 h UV-B plus UV-A exposure and after application of 15NH4+. A depression of the glutamate and glutamine pools was observed after addition of 15N-nitrate alone. Pools of all main amino acids from phytoplankton in summer 1993/94 were inhibited by UV irradiance. Results are discussed with reference to the UV target (e.g. enzymes, pigments) and the adaptation to the environmental conditions.  相似文献   

16.
为探讨西藏飞蝗(Locusta migratoria tibetensis Chen)对环境的适应机制,报道了温度和紫外辐射胁迫对西藏飞蝗抗氧化系统影响。以西藏飞蝗成虫为试材,研究5—20℃低温、30—45℃高温胁迫和紫外线辐射对其抗氧化酶活性和膜脂过氧化物丙二醛(MDA)含量的影响。在5—20℃低温胁迫下,成虫体壁和消化道超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性及丙二醛(MDA)含量分别随温度降低而升高;在30—35℃高温胁迫下,成虫SOD、POD和CAT活性分别随温度升高而升高,当温度超过35℃时,3种氧化酶活性均下降。长波紫外辐射(UV-A)和中波紫外辐射(UV-B)对处理后24h和72h成虫的SOD活性的影响大于可见光,在UV-A、UV-B和可见光3种光波长处理下,成虫的POD和CAT活性随光照时间的延长而增加,其中UV-B对两种酶活性影响大于UV-A和可见光,表现为UV-B处理组>UV-A处理组>可见光处理组;UV-A和UV-B处理能导致虫体体壁MDA含量明显升高,且对脂质过氧化的诱导存在时间效应;雌虫体壁、雌虫消化道、雄虫体壁和雄虫消化道的MDA含量分别在UV-B72h、UV-A72h、UV-A72h和UV-B72h达最大值0.72、0.88、0.66和0.94 nmol/g鲜重。在20—5℃低温胁迫下,西藏飞蝗成虫抗氧化酶活性升高,能较好的保护自身免遭活性氧自由基的伤害;西藏飞蝗对高温忍耐力差,在高于35℃高温胁迫下,成虫SOD、POD、CAT活性均下降;在长波和中波紫外辐射下,西藏飞蝗抗氧化酶活性显著升高,是西藏飞蝗对紫外线辐射强度大的青藏高原的一种重要适应。  相似文献   

17.
The generation of reactive oxygen species (ROS) under simulated solar radiation (UV-B: 0.30 Wm−2, UV-A: 25.70 Wm−2 and PAR: 118.06 Wm−2) was studied in the cyanobacterium Anabaena variabilis PCC 7937 using the oxidant-sensing fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA). DCFH-DA is a nonpolar dye, converted into the polar derivative DCFH by cellular esterases that are nonfluorescent but switched to highly fluorescent DCF when oxidized by intracellular ROS and other peroxides. The images obtained from the fluorescence microscope after 12 h of irradiation showed green fluorescence from cells covered with 295, 320 or 395 nm cut-off filters, indicating the generation of ROS in all treatments. However, the green/red fluorescence ratio obtained from fluorescence microscopic analysis showed the highest generation of ROS after UV-B radiation in comparison to PAR or UV-A radiation. Production of ROS was also measured by a spectrofluorophotometer and results obtained supported the results of fluorescence microscopy. Low levels of ROS were detected at the start (0 h) of the experiment showing that they are generated even during normal metabolism. This study also showed that UV-B radiation causes the fragmentation of the cyanobacterial filaments which could be due to the observed oxidative stress. This is the first report for the detection of intracellular ROS in a cyanobacterium by fluorescence microscopy using DCFH-DA and thereby suggesting the applicability of this method in the study of in vivo generation of ROS.  相似文献   

18.
UV irradiation has been shown to activate the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) in cell culture; however, only limited studies have been described in vivo. UV light has been categorized as UV-A (400 to 315 nm), -B (315 to 280 nm), or -C (less than 280 nm); the longer wavelengths are less harmful but more penetrative. Highly penetrative UV-A radiation constitutes the vast majority of UV sunlight reaching the earth's surface but is normally harmless. UV-B irradiation is more harmful but less prevalent than UV-A. In this report, the HIV-1 LTR-luciferase gene in the skin of transgenic mice was markedly activated when exposed to UV-B irradiation. The LTR in the skin of transgenic mice pretreated topically with a photosensitizing agent (psoralen) was also activated to similar levels when exposed to UV-A light. A 2-h exposure to sunlight activated the LTR in skin treated with psoralen, whereas the LTR in skin not treated with psoralen was activated after 7 h of sunlight exposure. The HIV-1 LTR-beta-galactosidase reporter gene was preferentially activated by UV-B irradiation in a small population of epidermal cells. The transgenic mouse models carrying HIV-1 LTR-luciferase and LTR-beta-galactosidase reporter genes have been used to demonstrate the in vivo UV-induced activation of the LTR and might be used to evaluate other environmental factors or pharmacologic substances that might potentially activate the HIV-1 LTR in vivo.  相似文献   

19.
The response of bean leaves to UV-B radiation was extensively investigated. UV-B radiation caused increase of ion leakage, loss of chlorophyll, and decrease of the maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (PhiPSII) of bean leaves. H2O2 contents and the extent of thylakoid membrane protein oxidation increased, indicated by the decrease of thiol contents and the increase of carbonyl contents with the duration of UV-B radiation. Addition of sodium nitroprusside, a nitric oxide (NO) donor, can partially alleviate UV-B induced decrease of chlorophyll contents, Fv/Fm and PhiPSII. Moreover, the oxidative damage to the thylakoid membrane was alleviated by NO. The potassium salt of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific NO scavenger, arrested NO mediated protective effects against UV-B induced oxidative damage. Incubation of thylakoid membrane with increasing H2O2 concentrations showed a progressive enhancement in carbonyl contents. H2O2 contents were decreased in the presence of NO under UV-B radiation through increased activities of superoxide dismutases, ascorbate peroxidases, and catalases. Taken together, the results suggest that NO can effectively protect plants from UV-B damage mostly probably mediated by enhanced activities of antioxidant enzymes.  相似文献   

20.
It is proposed that conformational changes induced in proteins by oxidation can lead to loss of activity or protein aggregation through exposure of hydrophobic residues and alteration in surface hydrophobicity. Because increased oxidative stress and protein aggregation are consistently observed in amyotrophic lateral sclerosis (ALS), we used a 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid (BisANS) photolabeling approach to monitor changes in protein unfolding in vivo in skeletal muscle proteins in ALS mice. We find two major proteins, creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), conformationally affected in the ALS G93A mouse model concordant with a 43% and 41% reduction in enzyme activity, respectively. This correlated with changes in conformation and activity that were detected in CK and GAPDH with in vitro oxidation. Interestingly, we found that GAPDH, but not CK, is conformationally and functionally affected in a longer-lived ALS model (H46R/H48Q), exhibiting a 22% reduction in enzyme activity. We proposed a reaction mechanism for BisANS with nucleophilic amino acids such as lysine, serine, threonine, and tyrosine, and BisANS was found to be primarily incorporated to lysine residues in GAPDH. We identified the specific BisANS incorporation sites on GAPDH in nontransgenic (NTg), G93A, and H46R/H48Q mice using liquid chromatography-tandem mass spectrometry analysis. Four BisANS-containing sites (K52, K104, K212, and K248) were found in NTg GAPDH, while three out of four of these sites were lost in either G93A or H46R/H48Q GAPDH. Conversely, eight new sites (K2, K63, K69, K114, K183, K251, S330, and K331) were found on GAPDH for G93A, including one common site (K114) for H46R/H48Q, which is not found on GAPDH from NTg mice. These data show that GAPDH is differentially affected structurally and functionally in vivo in accordance with the degree of oxidative stress associated with these two models of ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号