首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that mouse plasmacytoid dendritic cells (DC) produce high levels of IL-12p70, whereas bone marrow-derived myeloid DC and splenic DC produce substantially lower levels of this cytokine when activated with the TLR-9 ligand CpG. We now show that in response to CpG stimulation, high levels of IL-10 are secreted by macrophages, intermediate levels by myeloid DC, but no detectable IL-10 is secreted by plasmacytoid DC. MyD88-dependent TLR signals (TLR4, 7, 9 ligation), Toll/IL-1 receptor domain-containing adaptor-dependent TLR signals (TLR3, 4 ligation) as well as non-TLR signals (CD40 ligation) induced macrophages and myeloid DC to produce IL-10 in addition to proinflammatory cytokines. IL-12p70 expression in response to CpG was suppressed by endogenous IL-10 in macrophages, in myeloid DC, and to an even greater extent in splenic CD8alpha(-) and CD8alpha(+) DC. Although plasmacytoid DC did not produce IL-10 upon stimulation, addition of this cytokine exogenously suppressed their production of IL-12, TNF, and IFN-alpha, showing trans but not autocrine regulation of these cytokines by IL-10 in plasmacytoid DC.  相似文献   

2.
IL-12/IL-18-dependent IFN-gamma release by murine dendritic cells.   总被引:12,自引:0,他引:12  
Dendritic cells (DC) develop in GM-CSF-stimulated cultures from murine bone marrow progenitors in serum-free (or low serum) medium. CD11c(+) myeloid DC from 7-day cultures stimulated with TNF-alpha, IFN-alpha, IFN-gamma, or LPS up-regulated surface expression of CD40 and CD86 costimulator and MHC class II molecules, did not up-regulate the low "spontaneous" release of IL-18, and did not release IFN-gamma. Stimulation of in vitro-generated DC with exogenous IL-12 and IL-18 (but not with IL-4 or LPS plus IL-18) induced IFN-gamma expression and release in 15-20% of the DC (detectable by FACS analyses or ELISA). Endogenous IL-12 p70 produced by DC in response to ligation of CD40 stimulated IFN-gamma release when exogenous IL-18 was supplied. In vivo-generated, splenic CD8alpha(+) and CD8alpha(-) DC (from immunocompetent and immunodeficient H-2(d) and H-2(b) mice) cultured with IL-12 and IL-18 released IFN-gamma. The presence of LPS during the stimulation of DC with IL-18 plus endogenous (CD40 ligation) or exogenous IL-12 did not affect their IFN-gamma release. In contrast, splenic DC pretreated in vitro or in vivo by LPS strikingly down-regulated IFN-gamma release in response to stimulation by IL-18 and (endogenous or exogenous) IL-12. Hence, DC are a source of early IFN-gamma generated in response to a cascade of cytokine- and/or cell-derived signals that can be positively and negatively regulated.  相似文献   

3.
Dendritic cells (DC) are antigen-presenting cells that activate naive T cells. Murine DC are a heterogeneous population and can be subdivided into distinct subsets with different immune regulatory functions, namely the conventional DC (cDC), which include the CD8(+)Sirpalpha(-) and CD8(-)Sirpalpha(+) DC, and the plasmacytoid DC (pDC). In this study, the phenotype and function of DC subsets in both the thymus and spleen were compared. Significant differences between the thymic and splenic DC were observed in the expression of genes encoding chemokine receptors (CCRs), toll-like receptors (TLRs) and chemokines. Thymic DC expressed high levels of genes encoding a unique set of chemokines (CCL17 and CCL22) known to be important for T-cell development. Moreover, the capacity of the DC from the two organs to produce IL-6, IFN-alpha and IL-12p70 in response to the TLR 9 agonist CpG differed markedly, indicating intrinsic functional differences between subsets with similar surface phenotype. These results indicate that the microenvironment is an important factor that contributes to the functional specification of DC subsets in different lymphoid tissues.  相似文献   

4.
Microglia subpopulations were studied in mouse experimental autoimmune encephalomyelitis and toxoplasmic encephalitis. CNS inflammation was associated with the proliferation of CD11b(+) brain cells that exhibited the dendritic cell (DC) marker CD11c. These cells constituted up to 30% of the total CD11b(+) brain cell population. In both diseases CD11c(+) brain cells displayed the surface phenotype of myeloid DC and resided at perivascular and intraparenchymatic inflammatory sites. By lacking prominent phagocytic organelles, CD11c(+) cells from inflamed brain proved distinct from other microglia, but strikingly resembled bone marrow-derived DC and thus were identified as DC. This brain DC population comprised cells strongly secreting IL-12p70, whereas coisolated CD11c(-) microglia/brain macrophages predominantly produced TNF-alpha, GM-CSF, and NO. In comparison, the DC were more potent stimulators of naive or allogeneic T cell proliferation. Both DC and CD11c(-) microglia/macrophages from inflamed brain primed naive T cells from DO11.10 TCR transgenic mice for production of Th1 cytokines IFN-gamma and IL-2. Resting microglia that had been purified from normal adult brain generated immature DC upon exposure to GM-CSF, while CD40 ligation triggered terminal maturation. Consistently, a functional maturation of brain DC was observed to occur following the onset of encephalitis. In conclusion, these findings indicate that in addition to inflammatory macrophage-like brain cells, intraparenchymatical DC exist in autoimmune and infectious encephalitis. These DC functionally mature upon disease onset and can differentiate from resident microglia. Their emergence, maturation, and prolonged activity within the brain might contribute to the chronicity of intracerebral Th1 responses.  相似文献   

5.
We have recently demonstrated the presence of three populations of dendritic cells (DC) in the murine Peyer's patch. CD11b(+)/CD8alpha(-) (myeloid) DCs are localized in the subepithelial dome, CD11b(-)/CD8alpha(+) (lymphoid) DCs in the interfollicular regions, and CD11b(-)/CD8alpha(-) (double-negative; DN) DCs at both sites. We now describe the presence of a novel population of intraepithelial DN DCs within the follicle-associated epithelium and demonstrate a predominance of DN DCs only in mucosal lymphoid tissues. Furthermore, we demonstrate that all DC subpopulations maintain their surface phenotype upon maturation in vitro, and secrete a distinct pattern of cytokines upon exposure to T cell and microbial stimuli. Only myeloid DCs from the PP produce high levels of IL-10 upon stimulation with soluble CD40 ligand(-) trimer, or Staphylococcus aureus and IFN-gamma. In contrast, lymphoid and DN, but not myeloid DCs, produce IL-12p70 following microbial stimulation, whereas no DC subset produces IL-12p70 in response to CD40 ligand trimer. Finally, we show that myeloid DCs from the PP are particularly capable of priming naive T cells to secrete high levels of IL-4 and IL-10, when compared with those from nonmucosal sites, while lymphoid and DN DCs from all tissues prime for IFN-gamma production. These findings thus suggest that DC subsets within mucosal tissues have unique immune inductive capacities.  相似文献   

6.
We examined modulatory effects of lipopolysaccharide (LPS) on IL-6 and IL-12 production by mouse Langerhans cells (LC), spleen-derived CD11c+ dendritic cells (DC), and macrophages (Mphi). Low dose LPS (1 ng/ml) increased IL-6 and IL-12 p40 production by Mphi. LPS slightly augmented IL-6 production but showed no effect on IL-12 p40 production by DC. In contrast, only high dose LPS (1 microg/ml) induced IL-6 but not IL-12 p40 production by LC. CD14 expression was the highest on Mphi and then on DC, but not on LC, which may explain the difference in responsiveness to LPS. We also found that TGF-beta inhibited IL-6 and IL-12 p40 production by LPS-stimulated Mphi. However, TGF-beta did not inhibit IL-6 production and even enhanced IL-12 p40 production by anti-CD40/IFN-gamma-stimulated Mphi. Concerning LC, TGF-beta enhanced IL-6 and IL-12 p40 production when stimulated with anti-CD40/IFN-gamma alone or with anti-CD40/IFN-gamma and LPS. Taken together, these findings indicate diverse effects of LPS and TGF-beta on these antigen presenting cells, which probably represents their differential roles in the innate immunity.  相似文献   

7.
To gain insight into the defects responsible for impaired Th1 responses in human newborns, we analyzed the production of cytokines by dendritic cells (DC) derived from cord blood monocytes. We observed that neonatal DC generated from adherent cord blood mononuclear cells cultured for 6 days in the presence of IL-4 and GM-CSF show a phenotype similar to adult DC generated from adherent PBMC, although they express lower levels of HLA-DR, CD80, and CD40. Measurement of cytokine levels produced by neonatal DC upon stimulation by LPS, CD40 ligation, or poly(I:C) indicated a selective defect in the synthesis of IL-12. Determination of IL-12(p40) and IL-12(p35) mRNA levels by real-time RT-PCR revealed that IL-12(p35) gene expression is highly repressed in stimulated neonatal DC whereas their IL-12(p40) gene expression is not altered. The addition of rIFN-gamma to LPS-stimulated newborn DC restored their expression of IL-12(p35) and their synthesis of IL-12 (p70) up to adult levels. Moreover, we observed that neonatal DC are less efficient than adult DC to induce IFN-gamma production by allogenic adult CD4(+) T cells. This defect was corrected by the addition of rIL-12. We conclude that neonatal DC are characterized by a severe defect in IL-12(p35) gene expression which is responsible for an impaired ability to elicit IFN-gamma production by T cells.  相似文献   

8.
9.
Dendritic cells (DC) are crucial in generating immunity to infection. Here we characterize changes in DC in terms of number, activation and effector functions, focusing on conventional DC (cDC) and plasmacytoid DC (pDC), in Listeria-infected mice. Kinetic studies showed a subset- and tissue-specific expansion of cDC and upregulation of CD80 and CD86 on splenic and mesenteric lymph node (MLN) cDC after intragastric infection. Expansion of pDC was more prolonged than cDC, and pDC upregulated CD86 and MHC-II, but not CD80, in both the spleen and MLN. cDC were an important source of IL-12 but not TNF-alpha during infection, while pDC made neither of these cytokines. Instead other CD11c(int) cells produced these cytokines. Using five-colour flow cytometry and double intracellular cytokine staining, we detected phenotypically similar CD11c(int)CD11b(+)Gr1(+) cells with distinct capacities to produce TNF-alpha/IL-12 or TNF-alpha/iNOS (inducible nitric oxide synthase) in Listeria-infected tissues. IL-12p70 was also produced by sorted CD11c(hi) and CD11c(int)CD11b(+)Gr1(+) cells. Furthermore, production of TNF-alpha, iNOS and IL-12 was differentially dependent on cellular localization of the bacteria. Cytosol-restricted bacteria induced TNF-alpha and iNOS-producing cells, albeit at lower frequency than wild-type bacteria. In contrast, IL-12 was induced only with wild-type bacteria. These data provide new insight into the relative abundance and function of distinct CD11c-expressing populations during the early stage of Listeria infection.  相似文献   

10.
Dendritic cells (DC) not only stimulate T cells effectively but are also producers of cytokines that have important immune regulatory functions. In this study we have extended information on the functional differences between DC subpopulations to include differences in the production of the major immune-directing cytokines IL-12, IFN-alpha, and IFN-gamma. Splenic CD4(-)8(+) DC were identified as the major IL-12 producers in response to microbiological or T cell stimuli when compared with splenic CD4(-)8(-) or CD4(+)8(-) DC; however, all three subsets of DC showed similar IL-12 regulation and responded with increased IL-12 p70 production if IL-4 was present during stimulation. High level CD8 expression also correlated with extent of IL-12 production for DC isolated from thymus and lymph nodes. By using gene knockout mice we ruled out any role for CD8alpha itself, or of priming by T cells, on the superior IL-12-producing capacity of the CD8(+) DC. Additionally, CD8(+) DC were identified as the major producers of IFN-alpha compared with the two CD8(-) DC subsets, a finding that suggests similarity to the human plasmacytoid DC lineage. In contrast, the CD4(-)8(-) DC produced much more IFN-gamma than the CD4(-)8(+) or the CD4(+)8(-) DC under all conditions tested.  相似文献   

11.
We recently reported that the in vivo development of a novel CD8(+), but anti-CD8 mAb-resistant, CTL population is complex and distinct from that of conventional anti-CD8 mAb-sensitive CD8(+) CTL. In this study, we explored the role of the thymus in the generation of anti-CD8-resistant pCTL and in their maintenance once they are generated. We also investigated the capacities of the adult periphery and thymus to support the regeneration of anti-CD8-resistant pCTL after peripheral lymphocyte and/or thymocyte depletion. These studies indicate that the thymus is necessary for the generation but not the maintenance of peripheral anti-CD8-resistant pCTL. These studies also indicate that the adult thymus can produce these pCTL and the adult periphery can support their regeneration, if a new wave of thymic maturation is experimentally induced. These results may have implications for immune reconstitution after treatment for cancer or HIV infection.  相似文献   

12.
We demonstrate that functional and phenotypic equivalents of mouse splenic CD8(+) and CD8(-) conventional dendritic cell (cDC) subsets can be generated in vitro when bone marrow is cultured with fms-like tyrosine kinase 3 (flt3) ligand. In addition to CD45RA(high) plasmacytoid DC, two distinct CD24(high) and CD11b(high) cDC subsets were present, and these subsets showed equivalent properties to splenic CD8(+) and CD8(-) cDC, respectively, in the following: 1) surface expression of CD11b, CD24, and signal regulatory protein-alpha; 2) developmental dependence on, and mRNA expression of, IFN regulatory factor-8; 3) mRNA expression of TLRs and chemokine receptors; 4) production of IL-12 p40/70, IFN-alpha, MIP-1alpha, and RANTES in response to TLR ligands; 5) expression of cystatin C; and 6) cross-presentation of exogenous Ag to CD8 T cells. Furthermore, despite lacking surface CD8 expression, the CD24(high) subset contained CD8 mRNA and up-regulated surface expression when transferred into mice. This culture system allows access to bona fide counterparts of the splenic DC subsets.  相似文献   

13.
We determined whether distinct subclasses of dendritic cells (DC) could polarize cytokine production and regulate the pattern of xenograft rejection. C57BL/6 recipients, transplanted with Lewis rat hearts, exhibited a predominantly CD11c(+)CD8alpha(+) splenic DC population and an intragraft cytokine profile characteristic of a Th1-dominant response. In contrast, BALB/c recipients of Lewis rat heart xenografts displayed a predominantly CD11c(+)CD8alpha(-) splenic DC population and IL-4 intragraft expression characteristic of a Th2 response. In addition, the CD11c(+)IL-12(+) splenic DC population in C57BL/6 recipients was significantly higher than that in BALB/c recipients. Adoptive transfer of syngeneic CD8alpha(-) bone marrow-derived DC shifted a Th1-dominant, slow cell-mediated rejection to a Th2-dominant, aggressive acute vascular rejection (AVR) in C57BL/6 mice. This was associated with a cytokine shift from Th1 to Th2 in these mice. In contrast, transfer of CD8alpha(+) bone marrow-derived DC shifted AVR to cell-mediated rejection in BALB/c mice and significantly prolonged graft survival time from 6.0 +/- 0.6 days to 14.2 +/- 0.8 days. CD8alpha(+) DC transfer rendered BALB/c mice susceptible to cyclosporine therapy, thereby facilitating long-term graft survival. Furthermore, CD8alpha(+) DC transfer in IL-12-deficient mice reconstituted IL-12 expression, induced Th1 response, and attenuated AVR. Our data suggest that the pattern of acute xenogeneic rejection can be regulated by distinct DC subsets.  相似文献   

14.
Signaling via TLRs results in dendritic cell (DC) activation/maturation and plays a critical role in the outcome of primary immune responses. So far, no data exist concerning TLR expression by liver DC, generally regarded as less immunostimulatory than secondary lymphoid tissue DC. Because the liver lies directly downstream from the gut, it is constantly exposed to bacterial LPS, a TLR4 ligand. We examined TLR4 expression by freshly isolated, flow-sorted C57BL/10 mouse liver DC compared with spleen DC. Real-time PCR revealed that liver CD11c+CD8alpha- (myeloid) and CD11c+CD8alpha+ ("lymphoid-related") DC expressed lower TLR4 mRNA compared with their splenic counterparts. Lower TLR4 expression correlated with reduced capacity of LPS (10 ng/ml) but not anti-CD40-stimulated liver DC to induce naive allogeneic (C3H/HeJ) T cell proliferation. By contrast to LPS-stimulated splenic DC, these LPS-activated hepatic DC induced alloantigen-specific T cell hyporesponsiveness in vitro, correlated with deficient Th1 (IFN-gamma) and Th2 (IL-4) responses. When higher LPS concentrations (> or =100 ng/ml) were tested, the capacity of liver DC to induce proliferation of T cells and Th1-type responses was enhanced, but remained inferior to that of splenic DC. Hepatic DC activated by LPS in vivo were inferior allogeneic T cell stimulators compared with splenic DC, whereas adoptive transfer of LPS-stimulated (10 ng/ml) liver DC induced skewing toward Th2 responses. These data suggest that comparatively low expression of TLR4 by liver DC may limit their response to specific ligands, resulting in reduced or altered activation of hepatic adaptive immune responses.  相似文献   

15.
Development of the dendritic cell system during mouse ontogeny   总被引:12,自引:0,他引:12  
Based on the view that the efficacy of the immune system is associated with the maturation state of the immune cells, including dendritic cells (DC), we investigated the development and functional potential of conventional DC and plasmacytoid pre-DC (p-preDC) in spleen, thymus, and lymph nodes during mouse development. Both CD11c+ DC and CD45RA+ p-preDC were detected in small numbers in the thymus as early as embryonic day 17. The ratio of DC to thymocytes reached adult levels by 1 wk, although the normal CD8alpha+ phenotype was not acquired until later. Significant, but low, numbers of DC and p-preDC were present in the spleen of day 1 newborn mice. The full complement of DC and p-preDC was not acquired until 5 wk of age. The composition of DC populations in the spleen of young mice differed significantly from that found in adult mice, with a much higher percentage (50-60% compared with 20-25%) of the CD4-CD8alpha+ DC population and a much lower percentage (10-20% compared with 50-60%) of the CD4+CD8alpha- DC population. Although the p-preDC of young mice showed a capacity to produce IFN-alpha comparable with that of adult mice, the conventional DC of young mice were less efficient than those of their adult counterparts in IL-12p70 and IFN-gamma production and in Ag presentation. These results suggest that the neonatal DC system is not fully developed, and innate immunity is the dominant form of response. The complete DC system required for adaptive immunity in the mouse is not fully developed until 5 wk of age.  相似文献   

16.
Differential regulation of human blood dendritic cell subsets by IFNs   总被引:29,自引:0,他引:29  
Based on the relative expression of CD11c and CD1a, we previously identified subsets of dendritic cells (DCs) or DC precursors in human peripheral blood. A CD1a(+)/CD11c(+) population (CD11c(+) DCs), also called myeloid DCs, is an immediate precursor of Langerhans cells, whereas a CD1a(-)/CD11c(-) population (CD11c(-) DCs), sometimes called lymphoid DCs but better known as plasmacytoid DCs, is composed of type I IFN (IFN-alpha beta)-producing cells. Here, we investigate the effects of IFN-alpha beta and IFN-gamma as well as other cytokines on CD11c(+) and CD11c(-) DC subsets, directly isolated from the peripheral blood, instead of in vitro-generated DCs. IFN-gamma and IFN-alpha, rather than GM-CSF, were the most potent cytokines for enhancing the maturation of CD11c(+) DCs. Incubation of CD11c(+) DCs with IFN-gamma also resulted in increased IL-12 production, and this IL-12 allowed DCs to increase Th1 responses by alloreactive T cells. In contrast, IFN-alpha did not induce IL-12 but, rather, augmented IL-10 production. IFN-alpha-primed matured CD11c(+) DCs induced IL-10-producing regulatory T cells; however, this process was independent of the DC-derived IL-10. On the other hand, IFN-alpha by itself neither matured CD11c(-) DCs nor altered the polarization of responding T cells, although this cytokine was a potent survival factor for CD11c(-) DCs. Unlike IFN-alpha, IL-3 was a potent survival factor and induced the maturation of CD11c(-) DCs. The IL-3-primed CD11c(-) DCs activated T cells to produce IL-10, IFN-gamma, and IL-4. Thus, CD11c(+) and CD11c(-) DC subsets play distinct roles in the cytokine network, especially their responses to IFNs.  相似文献   

17.
The adaptive immune system has evolved distinct responses against different pathogens, but the mechanism(s) by which a particular response is initiated is poorly understood. In this study, we investigated the type of Ag-specific CD4(+) Th and CD8(+) T cell responses elicited in vivo, in response to soluble OVA, coinjected with LPS from two different pathogens. We used Escherichia coli LPS, which signals through Toll-like receptor 4 (TLR4) and LPS from the oral pathogen Porphyromonas gingivalis, which does not appear to require TLR4 for signaling. Coinjections of E. coli LPS + OVA or P. gingivalis LPS + OVA induced similar clonal expansions of OVA-specific CD4(+) and CD8(+) T cells, but strikingly different cytokine profiles. E. coli LPS induced a Th1-like response with abundant IFN-gamma, but little or no IL-4, IL-13, and IL-5. In contrast, P. gingivalis LPS induced Th and T cell responses characterized by significant levels of IL-13, IL-5, and IL-10, but lower levels of IFN-gamma. Consistent with these results, E. coli LPS induced IL-12(p70) in the CD8alpha(+) dendritic cell (DC) subset, while P. gingivalis LPS did not. Both LPS, however, activated the two DC subsets to up-regulate costimulatory molecules and produce IL-6 and TNF-alpha. Interestingly, these LPS appeared to have differences in their ability to signal through TLR4; proliferation of splenocytes and cytokine secretion by splenocytes or DCs from TLR4-deficient C3H/HeJ mice were greatly impaired in response to E. coli LPS, but not P. gingivalis LPS. Therefore, LPS from different bacteria activate DC subsets to produce different cytokines, and induce distinct types of adaptive immunity in vivo.  相似文献   

18.
Current immunological opinion holds that myeloid dendritic cell (mDC) precursors migrate from the blood to the tissues, where they differentiate into immature dermal- and Langerhans-type dendritic cells (DC). Tissue DC require appropriate signals from pathogens or inflammatory cytokines to mature and migrate to secondary lymphoid tissue. We show that purified blood mDC cultured in vitro with GM-CSF and IL-4, but in the absence of added exogenous maturation stimuli, rapidly differentiate into two maturational and phenotypically distinct populations. The major population resembles immature dermal DC, being positive for CD11b, CD1a, and DC-specific ICAM-3-grabbing nonintegrin. They express moderate levels of MHC class II and low levels of costimulatory molecules. The second population is CD11b(-/low) and lacks CD1a and DC-specific ICAM-3-grabbing nonintegrin but expresses high levels of MHC class II and costimulatory molecules. Expression of CCR7 on the CD11b(-/low) population and absence on the CD11b(+) cells further supports the view that these cells are mature and immature, respectively. Differentiation into mature and immature populations was not blocked by polymyxin B, an inhibitor of LPS. Neither population labeled for Langerin, E-cadherin, or CCR6 molecules expressed by Langerhans cells. Stimulation of 48-h cultured DC with LPS, CD40L, or poly(I:C) caused little increase in MHC or costimulatory molecule expression in the CD11b(-/low) DC but caused up-regulated expression in the CD11b(+) cells. In HIV-infected individuals, there was a marked decrease in the viability of cultured blood mDC, a failure to differentiate into the two populations described for normal donors, and an impaired ability to stimulate T cell proliferation.  相似文献   

19.
Dendritic cells (DC) are the professional APCs that initiate T cell immune responses. DC can develop from both myeloid and lymphoid progenitors. In the mouse, the CD8alpha(+) DC had been designated as "lymphoid" DC, and CD8alpha(-) DC as "myeloid" DC until recently when it was demonstrated that common myeloid progenitors can also give rise to CD8alpha(+) DC in bone marrow chimera mice. However, it is still not clear which committed myeloid lineages differentiate into CD8alpha(+) DC. Because monocytes can differentiate into DC in vivo, the simplest hypothesis is that the CD8alpha(+) DC can be derived from the monocyte/macrophage. In this study we show that cell clones, isolated from CD8alpha(+) DC lymphoma but with a monocytic phenotype (CD11c(low/-)D11b(high)CD8alpha(-)I-A(low)), can redifferentiate into CD8alpha(+) DC either when stimulated by LPS and CD40L or when they migrate into the lymphoid organs. Maturation of DC in vivo correlated with strong priming of allogeneic T cells. Moreover, the monocytes from cultured splenocytes or peritoneal exudates macrophages of wild-type mice are also capable of differentiating into CD11c(+)CD8alpha(+) DC after their migration into the draining lymph nodes. Our results suggest that monocytes can be direct precursors for CD11c(+)CD8alpha(+) DC in vivo. In addition, the monocyte clones described in this study may be valuable for studying the differentiation and function of CD8alpha(+) DC that mediate cross-presentation of Ag to CD8 T cells specific for cell-associate Ags.  相似文献   

20.
Dendritic cells (DC) mediate airway Ag presentation and play key roles in asthma and infections. Although DC subsets are known to perform different functions, their occurrence in mouse lungs has not been clearly defined. In this study, three major lung DC populations have been found. Two of them are the myeloid and plasmacytoid DC (PDC) well-characterized in other lymphoid organs. The third and largest DC population is the integrin alpha(E) (CD103) beta(7)-positive and I-A(high)CD11c(high)-DC population. This population was found to reside in the lung mucosa and the vascular wall, express a wide variety of adhesion and costimulation molecules, endocytose avidly, present Ag efficiently, and produce IL-12. Integrin alpha(E)beta(7)(+) DC (alphaE-DC) were distinct from intraepithelial lymphocytes and distinguishable from CD11b(high) myeloid and mPDCA-1(+)B220(+)Gr-1(+) PDC populations in surface marker phenotype, cellular functions, and tissue localization. Importantly, this epithelial DC population expressed high levels of the Langerhans cell marker Langerin and the tight junction proteins Claudin-1, Claudin-7, and ZO-2. In mice with induced airway hyperresponsiveness and eosinophilia, alphaE-DC numbers were increased in lungs, and their costimulation and adhesion molecules were up-regulated. These studies show that alphaE-DC is a major and distinct lung DC population and a prime candidate APC with the requisite surface proteins for migrating across the airway epithelia for Ag and pathogen capture, transport, and presentation. They exhibit an activated phenotype in allergen-induced lung inflammation and may play significant roles in asthma pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号