首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed dual-tagging sensors, operating via both Raman and fluorescence spectroscopy, composed of silver aromatic thiolates (AgSRs) modified with fluorescent organic dye for multiplex immunoassays. Owing to the photo-induced production of SERS-active Ag nanoparticles, AgSRs exhibit the surface-enhanced Raman scattering (SERS) spectra of corresponding thiols. The fluorescence dye-modified AgSRs were accordingly fabricated using dye-grafted polyelectrolytes during layer-by-layer deposition of cationic and anionic polyelectrolytes onto AgSRs. In the final stage, the tagging sensors assembled with either specific biotin group or specific antibodies (anti-h-IgG or anti-r-IgG) were employed to detect either streptavidin molecules or target antigens (h-IgG or r-IgG), respectively. Since numerous AgSRs can be used as the core materials, multiple bioassays are expected to be accomplishable using the present methodology. The fluorescence signal may be used as an immediate indicator of molecular recognition, while the SERS signals can be used subsequently as the signature of specific molecular interactions.  相似文献   

2.
We show that naturally occurring chitinous nanostructures found on the wings of the Graphium butterfly can be used as substrates for surface‐enhanced Raman scattering when coated with a thin film of gold or silver. The substrates were found to exhibit excellent biocompatibility and sensitivity, making them ideal for protein assaying. An assay using avidin/biotin binding showed that the substrates could be used to quantify protein binding directly from changes in the surface‐enhanced Raman scattering (SERS) spectra and were sensitive over a concentration range comparable with a typical enzyme‐linked immunosorbent assays (ELISA) assay. A biomimetic version of the wing nanostructures produced using a highly reproducible, large‐scale fabrication process, yielded comparable enhancement factors and biocompatibility. The excellent biocompatibility of the wings and biomimetic substrates is unparalleled by other lithographically produced substrates, and this could pave the way for widespread application of ultrasensitive SERS‐based bioassays. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Teng  Yuanjie  Wang  Zhenni  Ren  Zeyu  Qin  Yanping  Pan  Zaifa  Shao  Kang  She  Yuanbin  Huang  Weihao 《Plasmonics (Norwell, Mass.)》2021,16(2):349-358

Water-insoluble molecules usually show poor surface-enhanced Raman scattering (SERS) signals, because they are hardly adsorbed on the surface of most commonly used SERS substrates, such as aqueous Ag or Au colloids. In this work, a highly sensitive and reproducible Ag monolayer film (Ag MLF) SERS substrate prepared by self-assembly of Ag nanoparticles (Ag NPs) on water/oil interface can realize the trace SERS detection of water-insoluble enrofloxacin. The positively charged phase transfer catalyst can transfer the negatively charged Ag nanoparticles in aqueous solution to the water/oil interface. At the same time, the water-insoluble enrofloxacin can also be attracted to the interface because of its lipophilic group. The type/volume of the oil phase and phase transfer catalyst and the vortex mixing time were all optimized to maximize the SERS effect of Ag MLF. Results showed that trace water-insoluble enrofloxacin can be identified by Ag MLF and its detection sensitivity was significantly improved. The proposed novel Ag MLF can be further applied to detect other water-insoluble molecules in SERS.

  相似文献   

4.
利用有极高检测灵敏度的表面增强拉曼散射(SERS)技术,对吸附在银镜表面上的浓度较低的纯化的放氧核心复合物(Pd OECC)薄层进行了频移在250~3 100 cm-1范围内的拉曼光谱测量,除得到β-胡萝卜素分子的基频拉曼振动模外,在高频端还得到了许多弱峰.根据泛音和组合谱带选择定则分析,这些振动模式来自β-胡萝卜素分子的高阶拉曼光谱.还进行了Pd OECC在强光破坏前后的SERS光谱研究.在强光照射下,β-胡萝卜素分子的SERS光谱的散射强度明显降低,且线宽增加,说明强光照射不但改变了β-胡萝卜素的构象,而且也改变了β-胡萝卜素分子所处的微环境.其结果与强光照射前后吸收光谱的变化一致.另外,没有观察到Pd OECC薄层与银镜相互作用的其他新振动峰或Pd OECC中其他振动峰峰型的变化,可见Pd OECC在银镜表面保持原来的状态.这证明SERS技术在光合作用光破坏机理研究中的可行性.  相似文献   

5.
We demonstrate a method to fabricate highly sensitive surface-enhanced Raman spectroscopic (SERS) substrates using a filter syringe system that can be applied to the detection of various chemical contaminants. Silver nanoparticles (Ag NPs) are synthesized via reduction of silver nitrate by sodium citrate. Then the NPs are aggregated by sodium chloride to form nanoclusters that could be trapped in the pores of the filter membrane. A syringe is connected to the filter holder, with a filter membrane inside. By loading the nanoclusters into the syringe and passing through the membrane, the liquid goes through the membrane but not the nanoclusters, forming a SERS-active membrane. When testing the analyte, the liquid sample is loaded into the syringe and flowed through the Ag NPs coated membrane. The analyte binds and concentrates on the Ag NPs coated membrane. Then the membrane is detached from the filter holder, air dried and measured by a Raman instrument. Here we present the study of the volume effect of Ag NPs and sample on the detection sensitivity as well as the detection of 10 ppb ferbam and 1 ppm ampicillin using the developed assay.  相似文献   

6.
Surface enhanced Raman scattering (SERS) was used to study phospholipid monolayers transferred by the Langmuir-Blodgett (LB) technique to SERS active substrates. These substrates, which were constituted of gold colloidal nanoparticles bound to polysilane films grafted onto glass plates, showed a uniform and homogeneous layer with strong interacting particles as revealed from UV-visible extinction spectra and atomic force microscopy images. Laser excitation at 632.8 nm within the red part of the localized surface plasmon resonance leads to intense and reproducible SERS spectra of trans-1,2-bis(4-pyridyl)ethylene (BPE). From SERS measurements at different pHs it was possible to determine the apparent pK(a) of BPE adsorbed on gold-coated silanized substrates in the absence and presence of one LB monomolecular layer of phospholipids. These SERS titrations allowed the estimation of the pH at the metal-LB film interface.  相似文献   

7.
Development of rapid and sensitive methods to detect pathogens is important to food and water safety. This study aimed to detect and discriminate important food- and waterborne bacteria (i.e., Escherichia coli O157:H7, Staphylococcus epidermidis, Listeria monocytogenes, and Enterococcus faecelis) by surface-enhanced Raman spectroscopy (SERS) coupled with intracellular nanosilver as SERS substrates. An in vivo molecular probing using intracellular nanosilver for the preparation of bacterial samples was established and assessed. Satisfactory SERS performance and characteristic SERS spectra were obtained from different bacterial samples. Distinctive differences were observed in SERS spectral data, specifically in the Raman shift region of 500–1,800 cm−1, and between bacterial samples at the species and strain levels. The detection limit of SERS coupled with in vivo molecular probing using silver nanosubstrates could reach the level of single cells. Experiments with a mixture of E. coli O157:H7 and S. epidermidis for SERS measurement demonstrate that SERS could be used for classification of mixed bacterial samples. Transmission electron microscopy was used to characterize changes of morphology and cellular composition of bacterial cells after treatment of intracellular nanosilver. The results indicate that SERS coupled with intracellular silver nanosubstrates is a promising method for detection and characterization of food- and waterborne pathogenic and non-pathogenic bacterial samples.  相似文献   

8.
Surface-enhanced Raman scattering (SERS) is a particularly promising technique that has the potential to perform highly selective and sensitive in situ measurements of antibody-antigen reactions. This work describes the use of silver (Ag) colloids for immunoassay-based SERS detection of the fragile histidine triad (Fhit) protein. Alterations in Fhit protein expression have been associated with several human cancers, and, thus, the detection of Fhit protein is important because it can potentially be used as a cancer diagnostic biomarker, for both cancer detection and therapy.  相似文献   

9.
The surface enhanced Raman spectroscopy (SERS) spectrum of caffeine is recorded on a silver colloid at different pH values. It is discussed on the basis of the SERS "surface selection rules" in order to characterize its vibrational behavior on such a biological artificial model. To improve the previous assignments in the Raman spectrum and for a reliable, detailed analysis of SERS spectra, density functional theory calculations (structural parameters, harmonic vibrational wavenumbers, total electron density, and natural population analysis of the molecule) are performed for the anhydrous form of caffeine and the results are discussed. The predicted geometry and vibrational Raman spectra are in good agreement with the experimental data. The flat orientation of the mainly chemisorbed caffeine attached through the pi electrons and the lone pair of nonmethylated N atoms of the imidazole ring are proposed to occur at neutral and basic pH values. At acid pH values caffeine is probably adsorbed on the Ag surface through one or both oxygen atoms, more probably through the O atom of the conjugated carbonyl group with an end-on orientation. However, the changes in the overall SERS spectral pattern seem to indicate the electromagnetic mechanism as being the dominant one.  相似文献   

10.
11.
Optical properties of histamine and l-histidine have been analyzed by using surface-enhanced Raman scattering (SERS). A silver film over nanosphere (AgFON) structure with 120-nm-thick silver film on polystyrene nanospheres 1,000?nm in diameter is fabricated by nanosphere lithography to enhance the Raman signal excited at the laser wavelength of 532?nm. Normal Raman spectrum and the SERS spectrum of histamine and l-histidine were compared. Further, vibration modes of these molecules were calculated by using density functional method. In the SERS experiment, we were able to measure the Raman spectrum with a histamine concentration as less as 100?pM. This sensitivity is higher than that from high-performance liquid chromatography.  相似文献   

12.
Hollowed Ag nanostructures are, for the first time, electrodeposited on ITO glass without use of surfactant. The hollowed Ag nanostructure was investigated via a collaboration of scanning electron microscopy (SEM), XRD, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), XRD, and UV-vis. Results exhibited that the formation of the hollowed Ag nanostructure can be interpreted as the synergy effect of twin defect and low nucleation driving force. Surface-enhanced Raman scattering (SERS) spectra of rhodamine 6G and adenine molecules adsorbed on the surface of these Ag nanostructures were recorded. The smallest RSD of 1651 cm?1 Raman bands of rhodamine 6G was 14.7 %, indicating that the hollowed Ag nanostructures can be utilized for reproducible SERS application. Through comparison, it was found the good crystallinity was beneficial for SERS.  相似文献   

13.
An interdisciplinary approach employing functionalized nanoparticles and ultrasensitive spectroscopic techniques is reported here to track the molecular changes in early stage of malignancy. Melanoma tissue tracking at molecular level using both labelled and unlabelled silver and gold nanoparticles has been achieved using surface enhanced Raman scattering (SERS) technique. We used skin tissue from ex vivo mice with induced melanoma. Raman and SERS molecular characterization of melanoma tissue is proposed here for the first time. Optical nanosensors based on Ag and Au nanoparticles with chemisorbed cresyl violet molecular species as labels revealed sensitive capability to tissues tagging and local molecular characterization. Sensitive information originating from surrounding native biological molecules is provided by the tissue SERS spectra obtained either with visible or NIR laser line. Labelled nanoparticles introduced systematic differences in tissue response compared with unlabelled ones, suggesting that the label functional groups tag specific tissue components revealed by proteins or nucleic acids bands. Vibrational data collected from tissue are presented in conjunction with the immunohistochemical analysis. The results obtained here open perspectives in applied plasmonic nanoparticles and SERS for the early cancer diagnostic based on the appropriate spectral databank.  相似文献   

14.
Plasmonics - Although glancing angle deposited silver substrates offer an excellent figures for surface enhanced Raman scattering (SERS) sensing, the chemical instability issues of silver...  相似文献   

15.
In this work, Raman spectroscopy (RS) was employed to characterize molecular structures of [Arg8]vasopressin (AVP) and its [Acc2,D-Arg8]AVP, [Acc3]AVP, and [Cpa1, Acc3]AVP analogues. The RS band assignments have been proposed. To determine the mechanism of adsorption of the above-mentioned compounds adsorbed on a colloidal silver surface, surface-enhanced Raman spectra (SERS) were measured. The SERS spectra were used to determine relative proximity of the adsorbed functional groups of [corrected] investigated peptides and their orientation on the silver surface. The AVP and [Acc3]AVP SERS spectra (Acc: 1-aminocyclohexane-1-carboxylic acid) show that the L-tyrosine (Tyr) lies far from the metal surface, whereas the [Cpa1,Acc3]AVP spectrum (Cpa: 1-mercaptocyclohexaneacetic acid) provides evidence that Tyr interacts with the silver surface. These results suggest that [corrected] the binding of the Tyr-ionized phenolic group might be responsible for the selectivity of the analogues. We show that the aromatic ring of L-phenylalanine (Phe) of AVP and [Acc2,D-Arg8]AVP interacts with the silver surface. The strength of this interaction is considerably weaker for [Acc2,D-Arg8]AVP than for AVP. This might be due either to a longer distance between the Phe ring and the silver surface, or to the almost perpendicular orientation of the Phe ring towards the surface. The carbonyl group of the L-glutamine [corrected] (Gln) or L-asparagine [corrected](Asn) of AVP, [Acc2,D-Arg8]AVP, and [Acc3]AVP is strongly bound to the silver surface. We have also found that all peptides adsorb on the silver surface via sulfur atoms of the disulfide bridge, adopting a "GGG" conformation, except [Cpa1,Acc3]AVP, which accepts a "TGG" geometry.  相似文献   

16.
Surface enhanced Raman spectroscopy (SERS) was used to characterize a homologous series of alpha,omega-amino acids on colloidal gold and silver. Raman and SER spectra of the alpha,omega-amino acids, NH2(CH2)nCOOH (n = 3-7), are presented and analyzed, revealing the probable conformations of the molecules on the metal surfaces. The alpha,omega-amino acids interact with silver and gold through both the amine and carboxylate end groups, and modify the conformation of the molecular backbone in order to maximize these interactions. An odd-even effect is observed for backbone conformations of molecules adsorbed to the silver substrate. The anomolous SER spectrum of 5-aminopentanoic acid on gold suggests the possibility of condensation polymerization at the gold surface.  相似文献   

17.
The controlled tuning of interparticle distance at the nanoscale level is a major challenge for nanofabrication of surface-enhanced Raman scattering (SERS) active clusters and their application to molecular sensing. In fact, the geometrical properties of the narrow gaps between nanoparticles play a key role in determining the local field enhancement (and therefore, the SERS enhancement factor) and the spatial enhancement distribution in the gap region. Besides, very short interparticle distances may block the access of the analyte to the hot zone. In this paper, we report the synthesis of silver colloid NP clusters with interparticle distances fine tuned in the ≤2 nm range, by exploiting the chemical properties of linear α,ω-aliphatic diamines as molecular linkers with varying chain length. The bifunctional diamines also form intermolecular cavities within their self-assembled monolayers, suitable to host molecular analytes for nanosensing applications, as evidenced by SERS detection of organochlorine insecticides at the trace level. In this regard, the extension of the aliphatic chain played a crucial role in determining the SAM conformation and thus the final sensitivity of the functionalized SERS substrate.  相似文献   

18.
On‐site identification and quantification of chemicals is critical for promoting food safety, human health, homeland security risk assessment, and disease diagnosis. Surface‐enhanced Raman spectroscopy (SERS) has been widely considered as a promising method for on‐site analysis due to the advantages of nondestructive, abundant molecular information, and outstanding sensitivity. However, SERS for on‐site application has been restricted not only by the cost, performance, and portability of portable Raman instruments, but also by the sampling ability and signal enhancing performance of the SERS substrates. In recent years, the performance of SERS for on‐site analysis has been improved through portable Raman instruments, SERS substrates, and other combined technologies. In this review, popular commercial portable Raman spectrometers and the related technologies for on‐site analysis are compared. In addition, different types of SERS substrates for on‐site application are summarized. SERS combined with other technologies, such as electrochemical and microfluidics are also presented. The future perspective of SERS for on‐site analysis is also discussed.  相似文献   

19.
This article presents a prototype of a surface-enhanced Raman spectroscopy (SERS)-encoded magnetic bead of 8 μm diameter. The core part of the bead is composed of a magnetic nanoparticle (NP)-embedded sulfonated polystyrene bead. The outer part of the bead is embedded with Ag NPs on which labeling molecules generating specific SERS bands are adsorbed. A silica shell is fabricated for further bioconjugation and protection of SERS signaling. Benzenethiol, 4-mercaptotoluene, 2-naphthalenethiol, and 4-aminothiophenol are used as labeling molecules. The magnetic SERS beads are used as substrates for protein sensing and screening with easy handling. As a model application, streptavidin-bound magnetic SERS beads are used to illustrate selective separation in a flow cytometry system, and the screened beads are spectrally recognized by Raman spectroscopy. The proposed magnetic SERS beads are likely to be used as a versatile solid support for protein sensing and screening in multiple assay technology.  相似文献   

20.
Surface-enhanced Raman scattering (SERS) is an emerging analytical method used in biological and non-biological structure characterization. Since the nanostructure plasmonic properties is a significant factor for SERS performance, nanostructure fabrication with tunable plasmonic properties are crucial in SERS studies. In this study, a novel method for fabrication of tunable plasmonic silver nanodomes (AgNDs) is presented. The convective-assembly method is preferred for the deposition of latex particles uniformly on a regular glass slide and used as a template for polydimethylsiloxane (PDMS) to prepare nanovoids on a PDMS surface. The obtained nanovoids on the PDMS are used as a mold for AgNDs fabrication. The nanovoids are filled with Ag deposition by the electrochemical method to obtain metallic AgNDs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used for characterization of the structural properties of all fabricated AgNDs. The optical properties of AgNDs are characterized with the evaluation of SERS activity of 4-aminothiphonel and rhodamine 6G. In addition to experimental characterizations, the finite difference time domain (FDTD) method is used for the theoretical plasmonic properties calculation of the AgNDs. The experimental and theoretical results show that the SERS performance of AgNDs is strongly dependent on the heights and diameters of the AgNDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号