首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The BamHI restriction modification system was previously cloned into E. coli and maintained with an extra copy of the methylase gene on a high copy vector (Brooks et al., (1989) Nucl. Acids Res. 17, 979-997). The nucleotide sequence of a 3014 bp region containing the endonuclease (R) and methylase (M) genes has now been determined. The sequence predicts a methylase protein of 423 amino acids, Mr 49,527, and an endonuclease protein of 213 amino acids, Mr 24,570. Between the two genes is a small open reading frame capable of encoding a 102 amino acid protein, Mr 13,351. The M. BamHI enzyme has been purified from a high expression clone, its amino terminal sequence determined, and the nature of its substrate modification studied. The BamHI methylase modifies the internal C within its recognition sequence at the N4 position. Comparisons of the deduced amino acid sequence of M. BamHI have been made with those available for other DNA methylases: among them, several contain five distinct regions, 12 to 22 amino acids in length, of pronounced sequence similarity. Finally, stability and expression of the BamHI system in both E. coli and B. subtilis have been studied. The results suggest R and M expression are carefully regulated in a 'natural' host like B. subtilis.  相似文献   

2.
Nucleotide sequence of the EcoRII restriction endonuclease gene   总被引:3,自引:0,他引:3  
The nucleotide sequence of a 1394 basepair (bp) DNA fragment containing the EcoRII restriction endonuclease (R.EcoRII) gene was determined. The endonuclease gene is 1206 bp in length (predicted 402 amino acids (aa) and Mr = 45 178) and is separated by 33 bp from the EcoRII modification methylase (M.EcoRII) gene. The EcoRII restriction-modification system has a tail-to-tail organization of the two genes.  相似文献   

3.
A DNA fragment that carried the genes coding for FokI endonuclease and methylase was cloned from the chromosomal DNA of Flavobacterium okeanokoites, and the coding regions were assigned to the nucleotide sequence by deletion analysis. The methylase gene was 1,941 base pairs (bp) long, corresponding to a protein of 647 amino acid residues (Mr = 75,622), and the endonuclease gene was 1,749 bp long, corresponding to a protein of 583 amino acid residues (Mr = 66,216). The assignment of the methylase gene was further confirmed by analysis of the N-terminal amino acid sequence. The endonuclease gene was downstream from the methylase gene in the same orientation, separated by 69 bp. The promoter site, which could be recognized by Escherichia coli RNA polymerase, was upstream from the methylase gene, and the sequences adhering to the ribosome-binding sequence were identified in front of the respective genes. Analysis of the gene products expressed in E. coli cells by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the molecular weights of both enzymes coincided well with the values estimated from the nucleotide sequences, and that the monomeric forms were catalytically active. No significant similarity was found between the sequences of the two enzymes. Sequence comparison with other related enzymes indicated that FokI methylase contained two copies of a segment of tetra-amino acids which is characteristic of adenine-specific methylase.  相似文献   

4.
5.
6.
Proteins encoded by three genes in the DpnII restriction enzyme cassette of Streptococcus pneumoniae were purified and characterized. Large amounts of the proteins were produced by subcloning the cassette in an Escherichia coli expression system. All three proteins appear to be dimers composed of identical polypeptide subunits. One is the DpnII endonuclease, and the other two are DNA adenine methylase active at 5' GATC 3' sites. Inactivation of enzyme activity by insertions into the genes and comparison of the DNA sequence with the amino-terminal sequence of amino acid residues in the proteins demonstrated the following correspondence between genes and enzymes. The promoter-proximal gene in the operon, dpnM, encodes a 33 X 10(3) Mr polypeptide that gives rise to a potent DNA methylase. The next gene, dpnA, encodes the 31 x 10(3) Mr polypeptide of a weaker and less-specific methylase. The third gene, dpnB, encodes the 34 x 10(3) Mr polypeptide of the endonuclease. Although the endonuclease polypeptide is initiated from an ordinary ribosome-binding site, each of the methylase polypeptide begins at an atypical site with a consensus sequence entirely different from that of Shine & Dalgarno. This presumptive novel ribosome-binding site is well recognized in both S. pneumoniae and E. coli.  相似文献   

7.
The genes of the BanI restriction-modification system specific for GGPyPuCC were cloned from the chromosomal DNA of Bacillus aneurinolyticus IAM1077, and the coding regions were assigned on the nucleotide sequence on the basis of the N-terminal amino acid sequences and molecular weights of the enzymes. The restriction and modification genes coded for polypeptides with calculated molecular weights of 39,841 and 42,637, respectively. Both the enzymes were coded by the same DNA strand. The restriction gene was located upstream of the methylase gene, separated by 21 bp. The cloned genes were significantly expressed in E. coli cells, so that the respective enzymes could be purified to homogeneity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration indicated that the catalytically active form of the endonuclease was dimeric and that of the methylase was monomeric. Comparison of the amino acid sequences revealed no significant homology between the endonuclease and methylase, though both enzymes recognize the same target sequence. Sequence comparison with other related enzymes indicated that BanI methylase contains sequences common to cytosine-specific methylases.  相似文献   

8.
The DdeI restriction-modification system was previously cloned and has been maintained in E. coli on two separate and compatible plasmids (1). The nucleotide sequence of the endonuclease and methylase genes has now been determined; it predicts proteins of 240 amino acids, Mr = 27,808, and 415 amino acids, Mr = 47,081, respectively. Inspection of the DNA sequence shows that the 3' end of the methylase gene had been deleted during cloning. The clone containing the complete methylase gene was made and compared to that containing the truncated gene; only clones containing the truncated form support the endonuclease gene in E. coli. Bal-31 deletion studies show that methylase expression in the Dde clones is also dependent upon orientation of the gene with respect to pBR322. The truncated and complete forms of the methylase protein were purified and compared; the truncated form appears to be more stable and active in vitro. Finally, comparison of the deduced amino acid sequence of M. DdeI with that of other known cytosine methylases shows significant regions of homology.  相似文献   

9.
The genes encoding the MspI restriction modification system, which recognizes the sequence 5' CCGG, have been cloned into pUC9. Selection was based on expression of the cloned methylase gene which renders plasmid DNA insensitive to MspI cleavage in vitro. Initially, an insert of 15 kb was obtained which, upon subcloning, yielded a 3 kb EcoRI to HindIII insert, carrying the genes for both the methylase and the restriction enzyme. This insert has been sequenced. Based upon the sequence, together with appropriate subclones, it is shown that the two genes are transcribed divergently with the methylase gene encoding a polypeptide of 418 amino acids, while the restriction enzyme is composed of 262 amino acids. Comparison of the sequence of the MspI methylase with other cytosine methylases shows a striking degree of similarity. Especially noteworthy is the high degree of similarity with the HhaI and EcoRII methylases.  相似文献   

10.
11.
Two genes, coding for the HincII from Haemophilus influenzae Rc restriction-modification system, were cloned and expressed in Escherichia coli RR1. Their DNA sequences were determined. The HincII methylase (M.HincII) gene was 1,506 base pairs (bp) long, corresponding to a protein of 502 amino acid residues (Mr = 55,330). The HincII endonuclease (R.HincII) gene was 774 bp long, corresponding to a protein of 258 amino acid residues (Mr = 28,490). The amino acid residues predicted from the R.HincII and the N-terminal amino acid sequence of the enzyme found by analysis were identical. These methylase and endonuclease genes overlapped by 1 bp on the H. influenzae Rc chromosomal DNA. The clone, named E. coli RR1-Hinc, overproduced R.HincII. The R.HincII activity of this clone was 1,000-fold that from H. influenzae Rc. The amino acid sequence of M.HincII was compared with the sequences of four other adenine-specific type II methylases. Important homology was found between tne M.HincII and these other methylases.  相似文献   

12.
The EcoRII endonuclease cleaves DNA containing the sequence CC(A/T)GG before the first cytosine. The methylation of the second cytosine in the sequence by either the EcoRII methylase or Dcm, a chromosomally coded protein in Escherichia coli, inhibits the cleavage. The gene for the EcoRII endonuclease was mapped by analysis of derivatives containing linker insertions, transposon insertions, and restriction fragment deletions. Surprisingly, plasmids carrying the wild-type endonuclease gene and the EcoRII methylase gene interrupted by transposon insertions appeared to be lethal to dcm+ strains of E. coli. We conclude that not all the EcoRII/Dcm recognition sites in the cellular DNA are methylated in dcm+ strains. The DNA sequence of a 1650-base pair fragment containing the endonuclease gene was determined. It revealed an open reading frame that could code for a 45.6-kDa protein. This predicted size is consistent with the known size of the endonuclease monomer (44 kDa). The endonuclease and methylase genes appear to be transcribed convergently from separate promoters. The reading frame of the endonuclease gene was confirmed at three points by generating random protein fusions between the endonuclease and beta-galactosidase, followed by an analysis of the sequence at the junctions. One of these fusions is missing 18 COOH-terminal amino acids of the endonuclease but still displays significant ability to restrict incoming phage in addition to beta-galactosidase activity. No striking similarity between the sequence of the endonuclease and any other protein in the PIR data base was found. The knowledge of the primary sequence of the endonuclease and the availability of the various constructs involving its gene should be helpful in the study of the interaction of the enzyme with its substrate DNA.  相似文献   

13.
The complete type II restriction-modification system of Salmonella infantis was cloned in Escherichia coli as an R . Sau3AI fragment of 3,430 base pairs. The clone was shown to express the restriction endonuclease as well as the modification methylase. The nucleotide sequence of the above fragment showed two open reading frames of 461 and 230 codons in tail-to-tail orientation. These were shown to represent the modification methylase M . SinI and the restriction endonuclease R . SinI, respectively. The methylase M . SinI amino acid sequence revealed a considerable similarity to those of other deoxycytidylate methylases. In contrast, endonuclease R . SinI did not exhibit such a similarity to other restriction enzymes.  相似文献   

14.
15.
A 6.3 kb fragment of E.coli RFL57 DNA coding for the type IV restriction-modification system Eco57I was cloned and expressed in E.coli RR1. A 5775 bp region of the cloned fragment was sequenced which contains three open reading frames (ORF). The methylase gene is 1623 bp long, corresponding to a protein of 543 amino acids (62 kDa); the endonuclease gene is 2991 bp in length (997 amino acids, 117 kDa). The two genes are transcribed convergently from different strands with their 3'-ends separated by 69 bp. The third short open reading frame (186 bp, 62 amino acids) has been identified, that precedes and overlaps by 7 nucleotides the ORF encoding the methylase. Comparison of the deduced Eco57I endonuclease and methylase amino acid sequences revealed three regions of significant similarity. Two of them resemble the conserved sequence motifs characteristic of the DNA[adenine-N6] methylases. The third one shares similarity with corresponding regions of the PaeR7I, TaqI, CviBIII, PstI, BamHI and HincII methylases. Homologs of this sequence are also found within the sequences of the PaeR7I, PstI and BamHI restriction endonucleases. This is the first example of a family of cognate restriction endonucleases and methylases sharing homologous regions. Analysis of the structural relationship suggests that the type IV enzymes represent an intermediate in the evolutionary pathway between the type III and type II enzymes.  相似文献   

16.
17.
18.
Cloning and structure of the BepI modification methylase.   总被引:7,自引:7,他引:0       下载免费PDF全文
The gene coding for a CGCG specific DNA methylase has been cloned in E. coli from Brevibacterium epidermidis. The enzyme, named BepI methylase, is probably the cognate methylase of the FnuDII isoschizomer BepI endonuclease isolated from this strain. The expression of BepI methylase in E. coli is dependent on the orientation of the cloned fragment suggesting that the gene is transcribed from a promoter on the plasmid vector. No BepI endonuclease could be detected in the clones producing BepI methylase. The nucleotide sequence of the BepI methylase gene has been determined, it predicts a protein of 403 amino acids (MR: 45,447). Analysis of the amino acid sequence deduced from the nucleotide sequence revealed similarities between the BepI methylase and other cytosine methylases. M. BepI methylates the external cytosine in its recognition sequence.  相似文献   

19.
Two genes from the total genomic DNA of dairy starter culture Lactococcus lactis subsp. cremoris UC503, encoding ScrFI modification enzymes, have been cloned and expressed in Escherichia coli. No homology between the two methylase genes was detected, and inverse polymerase chain reaction of flanking chromosomal DNA indicated that both were linked on the Lactococcus genome. Neither clone encoded the cognate endonuclease. The DNA sequence of one of the methylase genes (encoded by pCI931M) was determined and consisted of an open reading frame 1,170 bp long, which could encode a protein of 389 amino acids (M(r), 44.5). The amino acid sequence contained the highly characteristic motifs of an m5C methylase. Extensive regions of homology were observed with the methylases of NlaX, EcoRII, and Dcm.  相似文献   

20.
Genetic organization of the KpnI restriction--modification system.   总被引:5,自引:4,他引:1       下载免费PDF全文
The KpnI restriction-modification (KpnI RM) system was previously cloned and expressed in E. coli. The nucleotide sequences of the KpnI endonuclease (R.KpnI) and methylase (M. KpnI) genes have now been determined. The sequence of the amino acid residues predicted from the endonuclease gene DNA sequence and the sequence of the first 12 NH2-terminal amino acids determined from the purified endonuclease protein were identical. The kpnIR gene specifies a protein of 218 amino acids (MW: 25,115), while the kpnIM gene codes for a protein of 417 amino acids (MW: 47,582). The two genes transcribe divergently with a intergeneic region of 167 nucleotides containing the putative promoter regions for both genes. No protein sequence similarity was detected between R.KpnI and M.KpnI. Comparison of the amino acid sequence of M.KpnI with sequences of various methylases revealed a significant homology to N6-adenine methylases, a partial homology to N4-cytosine methylases, and no homology to C5-methylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号