首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocilin is a protein found in the trabecular meshwork extracellular matrix tissue of the eye that plays a role in regulating intraocular pressure. Both wild-type and certain myocilin variants containing mutations in the olfactomedin (OLF) domain are linked to the optic neuropathy glaucoma. Because calcium ions are important biological cofactors that play numerous roles in extracellular matrix proteins, we examined the calcium binding properties of the myocilin OLF domain (myoc-OLF). Our study reveals an unprecedented high affinity calcium binding site within myoc-OLF. The calcium ion remains bound to wild-type OLF at neutral and acidic pH. A glaucoma-causing OLF variant, myoc-OLF(D380A), is calcium-depleted. Key differences in secondary and tertiary structure between myoc-OLF(D380A) and wild-type myoc-OLF, as well as limited access to chelators, indicate that the calcium binding site is largely buried in the interior of the protein. Analysis of six conserved aspartate or glutamate residues and an additional 18 disease-causing variants revealed two other candidate residues that may be involved in calcium coordination. Our finding expands our knowledge of calcium binding in extracellular matrix proteins; provides new clues into domain structure, function, and pathogenesis for myocilin; and offers insights into highly conserved, biomedically relevant OLF domains.  相似文献   

2.
Orwig SD  Lieberman RL 《PloS one》2011,6(1):e16347
Myocilin is an eye protein found in the trabecular extracellular matrix (TEM), within the anatomic region that controls fluid flow. Variants of myocilin, localized to its olfactomedin (OLF) domain, have been linked to inherited forms of glaucoma, a disease associated with elevated intraocular pressure. OLF domains have also been implicated in psychiatric diseases and cancers by their involvement in signaling, neuronal growth, and development. However, molecular characterization of OLFs has been hampered by challenges in recombinant expression, a hurdle we have recently overcome for the myocilin OLF domain (myoc-OLF). Here, we report the first detailed solution biophysical characterization of myoc-OLF to gain insight into its structure and function. Myoc-OLF is stable in the presence of glycosaminoglycans, as well as in a wide pH range in buffers with functional groups reminiscent of such glycosaminoglycans. Circular dichroism (CD) reveals significant β-sheet and β-turn secondary structure. Unexpectedly, the CD signature is reminiscent of α-chymotrypsin as well as another ocular protein family, the βγ-crystallins. At neutral pH, intrinsic tryptophan fluorescence and CD melts indicate a highly cooperative transition with a melting temperature of ~55 °C. Limited proteolysis combined with mass spectrometry reveals that the compact core structural domain of OLF consists of approximately residues 238-461, which retains the single disulfide bond and is as stable as the full myoc-OLF construct. The data presented here inform new testable hypotheses for interactions with specific TEM components, and will assist in design of therapeutic agents for myocilin glaucoma.  相似文献   

3.
Myocilin基因是与原发性开角型青光眼成因有关的基因。其蛋白产物myocilin蛋白是一种分泌型糖蛋白,具有特征性区域:N端亮氨酸拉链区,中央链接区,C端类嗅质蛋白(嗅素)区。眼组织中,小梁网myocilin蛋白表达水平最高且在细胞内外均可检测到。细胞内myocilin蛋白由小梁网细胞以外泌体样囊泡形式释放至胞外,突变时分泌受阻并异常聚集,使细胞致敏诱发凋亡。细胞外myocilin蛋白通过与一种或多种细胞外基质蛋白相互作用影响细胞的形态、粘接、迁移活动,调节细胞外基质的成分和结构,从而影响房水流出系统。  相似文献   

4.
Glaucoma is a leading cause of blindness worldwide. The disease is characterized by a degeneration of the optic nerve, which is usually associated with elevated intraocular pressure. The common form of adult-onset primary open-angle glaucoma is inherited as a complex trait, whereas the rarer early-onset juvenile open-angle glaucoma (JOAG) exhibits autosomal dominant inheritance. Of all cases of JOAG, approximately 10%-20% are caused by mutations in the myocilin gene. We have identified 25 pedigrees that are affected with typical JOAG and that demonstrate autosomal dominant inheritance. We sequenced the myocilin gene in probands from each family and found mutations in 8% of this population. To identify novel genes responsible for JOAG, we used families that did not have myocilin mutations for a genomewide screen. Markers located on chromosomes 9q22 and 20p12 showed evidence for linkage, identifying two novel loci for early-onset open-angle glaucoma.  相似文献   

5.
Summary Mutations in the gene encoding human myocilin are associated with some cases of juvenile and early-onset glaucoma. Glaucomatous mutations prevent myocilin from being secreted. The analysis of the defects associated with mutations point to the existence of factor(s) in addition to mutations that might be implicated in the development of glaucoma. In the present paper, we found that interaction of myocilin with one of the members of the synuclein family alters its properties, including its ability to be secreted. Results of immunoprecipitation show that myocilin is a γ-synuclein-interacting protein. Further analysis demonstrated that both myocilin and γ-synuclein are expressed in human TM cells, immortalized rat ganglion (RGC-5) cells, and HT22 hippocampal neurons. According to Western blotting, in addition to monomeric form with molecular weight 17 kDa γ-synuclein is present as higher molecular weight forms (∼35 and 68 KDa), presumably dimer and tetramer. Myocilin and γ-synuclein have partially overlapping perinuclear localization. Dexamethasone upregulates myocilin expression in RGC-5 cells and HT22 hippocampal neurons. We found alterations of myocilin properties as a result of its interaction with γ-synuclein. In cultured cells, γ-synuclein upregulates myocilin expression, inhibits its secretion and prevents the formation of high molecular weight forms of myocilin. Although both α-synuclein and γ-synuclein are expressed in HTM cells, only γ-synuclein interacts with myocilin and alters its properties. We conclude that myocilin and γ-synuclein interact and as a result, myocilin's properties are changed. Since myocilin and γ-synuclein have partially overlapping intracellular localization in cell types that are implicated in glaucoma development, their interaction may play an important role in glaucoma.  相似文献   

6.
Myocilin is a protein found in the extracellular matrix of trabecular meshwork tissue, the anatomical region of the eye involved in regulating intraocular pressure. Wild-type (WT) myocilin has been associated with steroid-induced glaucoma, and variants of myocilin have been linked to early-onset inherited glaucoma. Elevated levels and aggregation of myocilin hasten increased intraocular pressure and glaucoma-characteristic vision loss due to irreversible damage to the optic nerve. In spite of reports on the intracellular accumulation of mutant and WT myocilin in vitro, cell culture, and model organisms, these aggregates have not been structurally characterized. In this work, we provide biophysical evidence for the hallmarks of amyloid fibrils in aggregated forms of WT and mutant myocilin localized to the C-terminal olfactomedin (OLF) domain. These fibrils are grown under a variety of conditions in a nucleation-dependent and self-propagating manner. Protofibrillar oligomers and mature amyloid fibrils are observed in vitro. Full-length mutant myocilin expressed in mammalian cells forms intracellular amyloid-containing aggregates as well. Taken together, this work provides new insights into and raises new questions about the molecular properties of the highly conserved OLF domain, and suggests a novel protein-based hypothesis for glaucoma pathogenesis for further testing in a clinical setting.  相似文献   

7.
We examined ultrastructurally the localization of myocilin (formerly called trabecular meshwork inducible glucocorticoid response, or TIGR) protein in cultured human trabecular meshwork (TM) cells and in normal human TM tissues. The TM, a specialized tissue located at the chamber angle of the eye, is believed to be responsible for the development of glaucoma. The myocilin gene has been directly linked to both juvenile and primary open-angle glaucomas, and multiple mutations have been identified. Human TM cells were treated with 0.1 mM of dexamethasone (DEX) to induce myocilin expression. This protein was immunolocalized by colloidal gold electron microscopy using an anti-human myocilin polyclonal antibody. Double labeling with different sizes of gold particles was also performed with additional monoclonal antibodies specific for cell organelles and structures. In both DEX-treated and untreated cultured cells, myocilin was associated with mitochondria, cytoplasmic filaments, and vesicles. In TM tissues, myocilin was localized to mitochondria and cytoplasmic filaments of TM cells, elastic-like fibers in trabecular beams, and extracellular matrices in the juxtacanalicular region. These results indicate that myocilin is localized both intracellularly and extracellularly at multiple sites. This protein may exert diverse biological functions at different sites.  相似文献   

8.

Background  

Mutations in the gene encoding human myocilin (MYOC ) have been shown to cause juvenile- and adult-onset glaucoma. In addition, myocilin has been associated with glucocorticoid-induced ocular hypertension and steroid-induced glaucoma. To better understand the role myocilin plays in steroid-induced glaucoma and open-angle glaucoma, we examined rabbit myocilin for use in the rabbit animal model of steroid-induced glaucoma.  相似文献   

9.
Mutations in the gene of the G protein-coupled vasopressin V2 receptor (V2 receptor) cause X-linked nephrogenic diabetes insipidus (NDI). Most of the missense mutations on the extracellular face of the receptor introduce additional cysteine residues. Several groups have proposed that these residues might disrupt the conserved disulfide bond of the V2 receptor. To test this hypothesis, we first calculated a structure model of the extracellular receptor domains. The model suggests that the additional cysteine residues may form a second disulfide bond with the free, nonconserved extracellular cysteine residue Cys-195 rather than impairing the conserved bond. To address this question experimentally, we used the NDI-causing mutant receptors G185C and R202C. Their Cys-195 residues were replaced by alanine to eliminate the hypothetical second disulfide bonds. This second site mutation led to functional rescue of both NDI-causing mutant receptors, strongly suggesting that the second disulfide bonds are indeed formed. Furthermore we show that residue Cys-195, which is sensitive to "additional cysteine" mutations, is not conserved among the V2 receptors of other species and that the presence of an uneven number of extracellular cysteine residues, as in the human V2 receptor, is rare among class I G protein-coupled receptors.  相似文献   

10.
Mutations in MYOC gene encoding myocilin are responsible for primary open-angle glaucoma (POAG). In order to search for protein(s) that can interact with myocilin, we screened a human skeletal muscle cDNA library using yeast two-hybrid system and identified flotillin-1, a structural protein of lipid raft that is detergent-resistant and a liquid ordered microdomain, as a protein interacting with myocilin. The interaction was confirmed by in vitro glutathione S-transferase pulldown and in vivo co-immunoprecipitation studies. In yeast two-hybrid assay, the C-terminus of myocilin, an olfactomedin-like domain in which most mutations related to POAG are scattered, was found to be necessary and sufficient for the interaction. However, myocilins with mutations such as G364V, K423E, and Y437H on the domain failed to interact with flotillin-1. Although the physiological significance of the interaction has yet to be elucidated, our results showed that the alteration of the interaction by mutations in MYOC might be a key factor of the pathogenesis of POAG.  相似文献   

11.
MYOC, a gene involved in different types of glaucoma, encodes myocilin, a secreted glycoprotein of unknown function, consisting of an N-terminal leucine-zipper-like domain, a central linker region, and a C-terminal olfactomedin-like domain. Recently, we have shown that myocilin undergoes an intracellular endoproteolytic processing. We show herein that the proteolytic cleavage in the linker region splits the two terminal domains. The C-terminal domain is secreted to the culture medium, whereas the N-terminal domain mainly remains intracellularly retained. In transiently transfected 293T cells, the cleavage was prevented by calpain inhibitors, such as calpeptin, calpain inhibitor IV, and calpastatin. Since calpains are calcium-activated proteases, we analyzed how changes in either intra- or extracellular calcium affected the cleavage of myocilin. Intracellular ionomycin-induced calcium uptake enhanced myocilin cleavage, whereas chelation of extracellular calcium by EGTA inhibited the proteolytic processing. Calpains I and II cleaved myocilin in vitro. However, in cells in culture, only RNA interference knockdown of calpain II reduced myocilin processing. Subcellular fractionation and digestion of the obtained fractions with proteinase K showed that full-length myocilin resides in the lumen of the endoplasmic reticulum together with a subpopulation of calpain II. These data revealed that calpain II is responsible for the intracellular processing of myocilin in the lumen of the endoplasmic reticulum. We propose that this cleavage might regulate extracellular interactions of myocilin, contributing to the control of intraocular pressure.  相似文献   

12.
Myocilin is a secreted glycoprotein of unknown function that is ubiquitously expressed in many human organs, including the eye. Mutations in this protein produce glaucoma, a leading cause of blindness worldwide. To explore the biological role of myocilin and the pathogenesis of glaucoma, we have analyzed the expression of recombinant wild type and four representative pathogenic myocilin mutations (E323K, Q368X, P370L, and D380A) in transiently transfected cell lines derived from ocular and nonocular tissues. We found that wild type myocilin undergoes an intracellular endoproteolytic processing at the C terminus of Arg226. This cleavage predicts the production of two fragments, one of 35 kDa containing the C-terminal olfactomedin-like domain, and another of 20 kDa containing the N-terminal leucine zipper-like domain. Here we have analyzed the 35-kDa processed fragment, and we have found that it is co-secreted with the nonprocessed protein. Western immunoblot analyses showed that human aqueous humor and some ocular tissues also contain the processed 35-kDa myocilin, indicating that the endoproteolytic cleavage occurs in vivo. Mutant myocilins accumulated in the endoplasmic reticulum of transfected cells as insoluble aggregates. Interestingly, the four pathogenic myocilins inhibited the endoproteolytic processing with varying efficiency. Furthermore, the mutation P370L, which produces the most severe glaucoma phenotype, also elicited the most potent endoproteolytic cleavage inhibition. We propose that the endoproteolytic processing might regulate the activity of myocilin and that the inhibition of the processing by pathogenic mutations impairs the normal role of myocilin.  相似文献   

13.
The trabecular meshwork (TM), a specialized eye tissue, is a major site for regulation of the aqueous humor outflow. Malfunctioning of this tissue is believed to be responsible for development of glaucoma, a blinding disease. Myocilin is a gene linked to the most common form of glaucoma. The protein product has been localized to both intra and extracellular sites, but its function still remains unclear. This study was to determine whether extracellular myocilin presented in the matrix affects adhesion, morphology, and migratory and phagocytic activities of human TM cells in culture. Cell adhesion assays indicated that TM cells, while adhering readily on fibronectin, failed to attach on recombinant myocilin purified from bacterial cultures. Adhesion on fibronectin was also compromised by myocilin in a dose dependent manner. Myocilin in addition triggered TM cells to assume a stellate appearance with broad cell bodies and microspikes. Loss of actin stress fibers and focal adhesions was observed. TM cell migration on fibronectin/myocilin to scratched wounds was reduced compared to fibronectin controls. Myocilin, however, had little impact on phagocytic activities of TM cells. Cell attachment on fibronectin and migration of corneal fibroblasts, a control cell type, were not altered by myocilin. These results demonstrate that extracellular myocilin elicits anti-adhesive and counter-migratory effects on TM cells. Myocilin in the matrix of tissues could be exerting a similar influence on TM cells in vivo, impacting the flexibility and resilience required for maintenance of the normal aqueous outflow.  相似文献   

14.
Mutations in TIGR/MYOC (myocilin), a secretory protein of unknown function, have been recently linked to glaucoma. Most known mutations map to the C-terminus, an olfactomedin-like domain. We have previously shown that, in contrast to the wild-type, a truncated form of myocilin lacking the olfactomedin domain is not secreted. In this study, we present evidence that the mutant protein is not correctly processed in the endoplasmic reticulum (ER) and accumulates into insoluble aggregates. In addition, we show that the presence of increasing amounts of mutant protein induces a fraction of the soluble, native myocilin to move to the insoluble fraction. Given the importance of such protein aggregates in the etiology of several aging-related diseases, we propose that olfactomedin-defective mutants might contribute to the pathology of glaucoma through a mechanism involving intracellular accumulation of misfolded proteins.  相似文献   

15.
Myocilin variants, localized to the olfactomedin (OLF) domain, are linked to early-onset, inherited forms of open-angle glaucoma. Disease-causing myocilin variants accumulate within trabecular meshwork cells instead of being secreted to the trabecular extracellular matrix of the eye. We hypothesize that, like in other diseases of protein misfolding, aggregation and downstream pathogenesis originate from the compromised thermal stability of mutant myocilins. In an expansion of our pilot study of four mutants, we compare 21 additional purified OLF variants by using a fluorescence stability assay and investigate the secondary structure of the most stable variants by circular dichroism. Variants with lower melting temperatures are correlated with earlier glaucoma diagnoses. The chemical chaperone trimethylamine N-oxide is capable of restoring the stability of most, but not all, variants to wild-type (WT) levels. Interestingly, three reported OLF disease variants, A427T, G246R, and A445V, exhibited properties indistinguishable from those of WT OLF, but an increased apparent aggregation propensity in vitro relative to that of WT OLF suggests that biophysical factors other than thermal stability, such as kinetics and unfolding pathways, may also be involved in myocilin glaucoma pathogenesis. Similarly, no changes from WT OLF stability and secondary structure were detected for three annotated single-nucleotide polymorphism variants. Our work provides the first quantitative demonstration of compromised stability among many identified OLF variants and places myocilin glaucoma in the context of other diseases of protein misfolding.  相似文献   

16.
Recombinant antibodies with well-characterized epitopes and known conformational specificities are critical reagents to support robust interpretation and reproducibility of immunoassays across biomedical research. For myocilin, a protein prone to misfolding that is associated with glaucoma and an emerging player in other human diseases, currently available antibodies are unable to differentiate among the numerous disease-associated protein states. This fundamentally constrains efforts to understand the connection between myocilin structure, function, and disease. To address this concern, we used protein engineering methods to develop new recombinant antibodies that detect the N-terminal leucine zipper structural domain of myocilin and that are cross-reactive for human and mouse myocilin. After harvesting spleens from immunized mice and in vitro library panning, we identified two antibodies, 2A4 and 1G12. 2A4 specifically recognizes a folded epitope while 1G12 recognizes a range of conformations. We matured antibody 2A4 for improved biophysical properties, resulting in variant 2H2. In a human IgG1 format, 2A4, 1G12, and 2H2 immunoprecipitate full-length folded myocilin present in the spent media of human trabecular meshwork (TM) cells, and 2H2 can visualize myocilin in fixed human TM cells using fluorescence microscopy. These new antibodies should find broad application in glaucoma and other research across multiple species platforms.  相似文献   

17.
Wen D  Wildes CP  Silvian L  Walus L  Mi S  Lee DH  Meier W  Pepinsky RB 《Biochemistry》2005,44(50):16491-16501
Nogo-66 receptor (NgR1) is a leucine-rich repeat (LRR) protein that forms part of a signaling complex modulating axon regeneration. Previous studies have shown that the entire LRR region of NgR1, including the C-terminal cap of the LRR, LRRCT, is needed for ligand binding, and that the adjacent C-terminal region (CT stalk) of the NgR1 contributes to interaction with its coreceptors. To provide structure-based information for these interactions, we analyzed the disulfide structure of full-length NgR1. Our analysis revealed a novel disulfide structure in the C-terminal region of the NgR1, wherein the two Cys residues, Cys-335 and Cys-336, in the CT stalk are disulfide-linked to Cys-266 and Cys-309 in the LRRCT region: Cys-266 is linked to Cys-335, and Cys-309 to Cys-336. The other two Cys residues, Cys-264 and Cys-287, in the LRRCT region are disulfide-linked to each other. The analysis also showed that Cys-419 and Cys-429, in the CT stalk region, are linked to each other by a disulfide bond. Although published crystal structures of a recombinant fragment of NgR1 had revealed a disulfide linkage between Cys-266 and Cys-309 in the LRRCT region and we verified its presence in the corresponding fragment, this is artificially caused by the truncation of the protein, since this linkage was not detected in intact NgR1 or a slightly larger fragment containing Cys-335 and Cys-336. A structural model of the LRRCT with extended residues 311-344 from the CT stalk region is proposed, and its function in coreceptor binding is discussed.  相似文献   

18.
Comparative modeling studies on conserved regions of the gastric H(+)K(+)-ATPase reveal that the E1-E2 conformational transition induces significant tertiary structural changes while conserving the secondary structure. The residues 516-530 of the cytoplasmic domain and TM10 within the transmembrane (TM) regions undergo maximum tertiary structural changes. The luminal regions exhibit comparatively lesser tertiary structural deviations. Residues 249-304 show maximum secondary structural deviation in the conformational transition. The Cys-815 and Cys-323 residues involved in inhibitor binding are found to have smaller buried side chain areas in the E1 conformation compared to E2. Retention of activity correlates well with the buried side chain area when selected amino acid residues in TM6 are mutated using modeling techniques with bulkier amino acid residues. Conformational specificity for ion binding is corroborated with the fraction of side chains exposed to polar atoms of the residues E345, D826, V340, A341, V343, and E822.  相似文献   

19.
Myocilin, a matricellular protein, is mutated in glaucoma. Here we report the identification and characterization, by the yeast two-hybrid system, of a putative interacting protein with myocilin. One of the positive clones exhibited 100% identity with the carboxyl-terminal (C-t) region of hevin, a member of the BM-40/SPARC/osteonectin family of extracellular matrix proteins. Protein interaction was assayed, in doubly transfected 293-T cells, by Western blot and fluorescent microscopy. Western blot analysis of the culture medium and lysates from cotransfected cells indicated that myocilin causes intracellular accumulation of hevin-C-t and impairs its secretion. This effect on hevin-C-t was augmented when coexpressed with the myocilin P370L mutant, known to cause a severe form of glaucoma. By fluorescent microscopy, myocilin localizes with hevin-C-t in the Golgi in cotransfected 293-T cells and with hevin-wt in the ocular ciliary epithelium. Overall, these results suggested that the C-t of hevin contains important determinants for interaction with myocilin.  相似文献   

20.
The MYOCILIN gene encodes a secreted glycoprotein which is highly expressed in eye drainage structures. Mutations in this gene may lead to juvenile open-angle glaucoma and adult onset primary open-angle glaucoma, one of the leading causes of irreversible blindness in the world. Functions of wild-type myocilin are still unclear. We have recently demonstrated that myocilin is a modulator of Wnt signaling and may affect actin cytoskeleton organization. Here we report that myocilin and its naturally occurring proteolytic fragments, similar to Wnt3a, are able to stimulate trabecular meshwork, NIH3T3, and FHL124 cell migration with the N-terminal proteolytic fragment of myocilin lacking the olfactomedin domain producing the highest stimulatory effect. Stimulation of cell migration occurs through activation of the integrin-focal adhesion kinase (FAK)-serine/threonine kinase (AKT) signaling pathway. Inhibition of FAK by siRNA reduced the stimulatory action of myocilin by threefold. Activation of several components of this signaling pathway was also demonstrated in the eyes of transgenic mice expressing elevated levels of myocilin in the eye drainage structures. These data extend the similarities between actions of myocilin and Wnt proteins acting through a β-catenin-independent mechanism. The modification of the migratory ability of cells by myocilin may play a role in normal functioning of the eye anterior segment and its pathology including glaucoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号