首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant phosphate (Pi) transporters mediate the uptake and translocation of this nutrient within plants. A total of 13 sequences in the rice ( Oryza sativa ) genome can be identified as belonging to the Pi transporter (Pht1) family. Here, we report on the expression patterns, biological properties and the physiological roles of two members of the family: OsPht1;2 ( OsPT2 ) and OsPht1;6 ( OsPT6 ). Expression of both genes increased significantly under Pi deprivation in roots and shoots. By using transgenic rice plants expressing the GUS reporter gene, driven by their promoters, we detected that OsPT2 was localized exclusively in the stele of primary and lateral roots, whereas OsPT6 was expressed in both epidermal and cortical cells of the younger primary and lateral roots. OsPT6, but not OsPT2, was able to complement a yeast Pi uptake mutant in the high-affinity concentration range. Xenopus oocytes injected with OsPT2 mRNA showed increased Pi accumulation and a Pi-elicited depolarization of the cell membrane electrical potential, when supplied with mM external concentrations. Both results show that OsPT2 mediated the uptake of Pi in oocytes. In transgenic rice, the knock-down of either OsPT2 or OsPT6 expression by RNA interference significantly decreased both the uptake and the long-distance transport of Pi from roots to shoots. Taken together, these data suggest OsPT6 plays a broad role in Pi uptake and translocation throughout the plant, whereas OsPT2 is a low-affinity Pi transporter, and functions in translocation of the stored Pi in the plant.  相似文献   

2.
Jia H  Ren H  Gu M  Zhao J  Sun S  Zhang X  Chen J  Wu P  Xu G 《Plant physiology》2011,156(3):1164-1175
Plant phosphate transporters (PTs) are active in the uptake of inorganic phosphate (Pi) from the soil and its translocation within the plant. Here, we report on the biological properties and physiological roles of OsPht1;8 (OsPT8), one of the PTs belonging to the Pht1 family in rice (Oryza sativa). Expression of a β-glucuronidase and green fluorescent protein reporter gene driven by the OsPT8 promoter showed that OsPT8 is expressed in various tissue organs from roots to seeds independent of Pi supply. OsPT8 was able to complement a yeast Pi-uptake mutant and increase Pi accumulation of Xenopus laevis oocytes when supplied with micromolar (33)Pi concentrations at their external solution, indicating that it has a high affinity for Pi transport. Overexpression of OsPT8 resulted in excessive Pi in both roots and shoots and Pi toxic symptoms under the high-Pi supply condition. In contrast, knockdown of OsPT8 by RNA interference decreased Pi uptake and plant growth under both high- and low-Pi conditions. Moreover, OsPT8 suppression resulted in an increase of phosphorus content in the panicle axis and in a decrease of phosphorus content in unfilled grain hulls, accompanied by lower seed-setting rate. Altogether, our data suggest that OsPT8 is involved in Pi homeostasis in rice and is critical for plant growth and development.  相似文献   

3.
4.
Phosphate (Pi) transporters mediate acquisition and transportation of Pi within plants. Here, we investigated the functions of OsPht1;4 (OsPT4), one of the 13 members of the Pht1 family in rice. Quantitative real‐time RT‐PCR analysis revealed strong expression of OsPT4 in roots and embryos, and OsPT4 promoter analysis using reporter genes confirmed these findings. Analysis using rice protoplasts showed that OsPT4 localized to the plasma membrane. OsPT4 complemented a yeast mutant defective in Pi uptake, and also facilitated increased accumulation of Pi in Xenopus oocytes. Further, OsPT4 genetically modified (GM) rice lines were generated by knockout/knockdown or over‐expression of OsPT4. Pi concentrations in roots and shoots were significantly lower and higher in knockout/knockdown and over‐expressing plants, respectively, compared to wild‐type under various Pi regimes. 33Pi uptake translocation assays corroborated the altered acquisition and mobilization of Pi in OsPT4 GM plants. We also observed effects of altered expression levels of OsPT4 in GM plants on the concentration of Pi, the size of the embryo, and several attributes related to seed development. Overall, our results suggest that OsPT4 encodes a plasma membrane‐localized Pi transporter that facilitates acquisition and mobilization of Pi, and also plays an important role in development of the embryo in rice.  相似文献   

5.
6.
Phosphate (Pi) homeostasis in plants is required for plant growth and development, and is achieved by the coordination of Pi acquisition, translocation from roots to shoots, and remobilization within plants. Previous reports have demonstrated that over‐expression of OsPHR2 (the homolog of AtPHR1) and knockdown of OsSPX1 result in accumulation of excessive shoot Pi in rice. Here we report that OsPHR2 positively regulates the low‐affinity Pi transporter gene OsPT2 by physical interaction and upstream regulation of OsPHO2 in roots. OsPT2 is responsible for most of the OsPHR2‐mediated accumulation of excess shoot Pi. OsSPX1 suppresses the regulation on expression of OsPT2 by OsPHR2 and the accumulation of excess shoot Pi, but it does not suppress induction of OsPT2 or the accumulation of excessive shoot Pi in the Ospho2 mutant. Our data also show that OsSPX1 is a negative regulator of OsPHR2 and is involved in the feedback of Pi‐signaling network in roots that is defined by OsPHR2 and OsPHO2. This finding provides new insight into the regulatory mechanism of Pi uptake, translocation, allocation and homeostasis in plants.  相似文献   

7.
We characterized the function of two rice phosphate (Pi) transporters: OsPHT1;9 (OsPT9) and OsPHT1;10 (OsPT10). OsPT9 and OsPT10 were expressed in the root epidermis, root hairs and lateral roots, with their expression being specifically induced by Pi starvation. In leaves, expression of the two genes was observed in both mesophyll and vasculature. High‐affinity Km values for Pi transport of OsPT9 and OsPT10 were determined by yeast experiments and two‐electrode voltage clamp analysis of anion transport in Xenopus oocytes expressing OsPT9 and OsPT10. Pi uptake and Pi concentrations in transgenic plants harbouring overexpressed OsPT9 and OsPT10 were determined by Pi concentration analysis and 33P‐labelled Pi uptake rate analysis. Significantly higher Pi uptake rates in transgenic plants compared with wild‐type plants were observed under both high‐Pi and low‐Pi solution culture conditions. Conversely, although no alterations in Pi concentration were found in OsPT9 or OsPT10 knockdown plants, a significant reduction in Pi concentration in both shoots and roots was observed in double‐knockdown plants grown under both high‐ and low‐Pi conditions. Taken together, our results suggest that OsPT9 and OsPT10 redundantly function in Pi uptake.  相似文献   

8.
9.
? The activation of high-affinity root transport systems is the best-conserved strategy employed by plants to cope with low inorganic phosphate (Pi) availability, a role traditionally assigned to Pi transporters of the Pht1 family, whose respective contributions to Pi acquisition remain unclear. ? To characterize the Arabidopsis thaliana Pht1;9 transporter, we combined heterologous functional expression in yeast with expression/subcellular localization studies and reverse genetics approaches in planta. Double Pht1;9/Pht1;8 silencing lines were also generated to gain insight into the role of the closest Pht1;9 homolog. ? Pht1;9 encodes a functional plasma membrane-localized transporter that mediates high-affinity Pi/H? symport activity in yeast and is highly induced in Pi-starved Arabidopsis roots. Null pht1;9 alleles exhibit exacerbated responses to prolonged Pi limitation and enhanced tolerance to arsenate exposure, whereas Pht1;9 overexpression induces the opposite phenotypes. Strikingly, Pht1;9/Pht1;8 silencing lines display more pronounced defects than the pht1;9 mutants. ? Pi and arsenic plant content analyses confirmed a role of Pht1;9 in Pi acquisition during Pi starvation and arsenate uptake at the root-soil interface. Although not affecting plant internal Pi repartition, Pht1;9 activity influences the overall Arabidopsis Pi status. Finally, our results indicate that both the Pht1;9 and Pht1;8 transporters function in sustaining plant Pi supply on environmental Pi depletion.  相似文献   

10.
11.
Zhou J  Jiao F  Wu Z  Li Y  Wang X  He X  Zhong W  Wu P 《Plant physiology》2008,146(4):1673-1686
Previous research has demonstrated that AtPHR1 plays a central role in phosphate (Pi)-starvation signaling in Arabidopsis thaliana. In this work, two OsPHR genes from rice (Oryza sativa) were isolated and designated as OsPHR1 and OsPHR2 based on amino acid sequence homology to AtPHR1. Their functions in Pi signaling in rice were investigated using transgenic plants. Our results showed that both OsPHR1 and OsPHR2 are involved in Pi-starvation signaling pathway by regulation of the expression of Pi-starvation-induced genes, whereas only OsPHR2 overexpression results in the excessive accumulation of Pi in shoots under Pi-sufficient conditions. Under Pi-sufficient conditions, overexpression of OsPHR2 mimics Pi-starvation stress in rice with enhanced root elongation and proliferated root hair growth, suggesting the involvement of OsPHR2 in Pi-dependent root architecture alteration by both systematic and local pathways. In OsPHR2-overexpression plants, some Pi transporters were up-regulated under Pi-sufficient conditions, which correlates with the strongly increased content of Pi. The mechanism behind the OsPHR2 regulated Pi accumulation will provide useful approaches to develop smart plants with high Pi efficiency.  相似文献   

12.
13.

Background and aims

Whereas the expression patterns and kinetic properties of the rice (Oryza sativa) phosphate transporter gene OsPht1; 6 (OsPT6) are well documented, little is known about the biological functions of this gene. The aim of this study was to investigate the roles of OsPT6 in inorganic phosphate (Pi) acquisition and mobilization, and examine its potential to enhance agricultural production.

Methods

Here, we generated OsPT6 overexpression transgenic plants using Wuyujing 7, a widely cultivated variety of japonica rice, and then treated transgenic lines and wild type with different Pi supply in hydroponic and soil experiments to explore the functions of OsPT6 in rice.

Results

The OsPT6-overexpressing rice lines grew better and accumulated more biomass than wild-type plants, and exhibited significant increases in P accumulation in various tissues, including reproductive tissues under both hydroponic and soil culture conditions. Phosphate-uptake experiment using radiolabeled Pi (33P) showed that the rate of Pi uptake was 75 % and 73 % greater in transgenic plants grown under Pi-sufficient and -deficient conditions, respectively, than the wild-type controls, and that the shoot/root ratio of 33P was 104 % and 42 % greater, respectively. In addition, the grain yield per transgenic plant was much higher than that of the wild-type plants under field conditions.

Conclusions

Taken together, our results demonstrate that OsPT6 plays a vital role in Pi acquisition and mobilization in rice and suggest that this gene may be used for genetic engineering rice plants that require less Pi fertilizer.  相似文献   

14.
磷、硫转运蛋白是大豆(Glycine max(L.)Merr.)体内磷、硫转运的重要载体,参与调节磷和硫酸盐的吸收与转运,对提高大豆的磷、硫利用效率至关重要。大豆磷转运蛋白可划分为Pht1、Pht2、Pht3、Pho1和Pho2 5大家族,目前对Pht1的研究最为深入。大豆14个Pht1家族可分为3个亚家族,他们对磷吸收和转运具有重要作用。大豆硫转运蛋白基因GmSULTR1;2b可在大豆根中特异性表达并被低硫胁迫诱导。本文基于大豆磷、硫的营养吸收、转运与利用过程中的相关性,对Pht1家族以及GmSULTR1;2b基因在大豆中的研究进展进行了综述,并对近年来大豆磷、硫转运蛋白的研究进展及未来的研究方向进行了展望。  相似文献   

15.
Phosphorus (P) is one of the most important major mineral elements for plant growth and metabolism. Plants have evolved adaptive regulatory mechanisms to maintain phosphate (Pi) homeostasis by improving phosphorus uptake, translocation, remobilization and efficiency of use. Here we review recent advances in our understanding of the OsPHR2-mediated phosphate-signaling pathway in rice. OsPHR2 positively regulates the low-affinity Pi transporter OsPT2 through physical interaction and reciprocal regulation of OsPHO2 in roots. OsPT2 is responsible for most of the OsPHR2-mediated accumulation of excess Pi in shoots. OsSPX1 acts as a repressor in the OsPHR2-mediated phosphate-signaling pathway. Some mutants screened from ethyl methanesulfonate (EMS)-mutagenized M2 population of OsPHR2 overexpression transgenic line removed the growth inhibition, indicating that some unknown factors are crucial for Pi utilization or plant growth under the regulation of OsPHR2.  相似文献   

16.
Hu B  Zhu C  Li F  Tang J  Wang Y  Lin A  Liu L  Che R  Chu C 《Plant physiology》2011,156(3):1101-1115
Although phosphate (Pi) starvation signaling is well studied in Arabidopsis (Arabidopsis thaliana), it is still largely unknown in rice (Oryza sativa). In this work, a rice leaf tip necrosis1 (ltn1) mutant was identified and characterized. Map-based cloning identified LTN1 as LOC_Os05g48390, the putative ortholog of Arabidopsis PHO2, which plays important roles in Pi starvation signaling. Analysis of transgenic plants harboring a LTN1 promoter::β-glucuronidase construct revealed that LTN1 was preferentially expressed in vascular tissues. The ltn1 mutant exhibited increased Pi uptake and translocation, which led to Pi overaccumulation in shoots. In association with enhanced Pi uptake and transport, some Pi transporters were up-regulated in the ltn1 mutant in the presence of sufficient Pi. Furthermore, the elongation of primary and adventitious roots was enhanced in the ltn1 mutant under Pi starvation, suggesting that LTN1 is involved in Pi-dependent root architecture alteration. Under Pi-sufficient conditions, typical Pi starvation responses such as stimulation of phosphatase and RNase activities, lipid composition alteration, nitrogen assimilation repression, and increased metal uptake were also activated in ltn1. Moreover, analysis of OsmiR399-overexpressing plants showed that LTN1 was down-regulated by OsmiR399. Our results strongly indicate that LTN1 is a crucial Pi starvation signaling component downstream of miR399 involved in the regulation of multiple Pi starvation responses in rice.  相似文献   

17.
The mobilization of inorganic phosphate (Pi) in planta is a complex process regulated by a number of developmental and environmental cues. Plants possess many Pi transporters that acquire Pi from the rhizosphere and translocate it throughout the plant. A few members of the high-affinity Pht1 family of Pi transporters have been functionally characterized and, for the most part, have been shown to be involved in Pi acquisition. We recently demonstrated that the Arabidopsis Pi transporter, Pht1;5, plays a key role in translocating Pi between tissues. Loss-of-function pht1;5 mutant seedlings accumulated more P in shoots relative to wild type but less in roots. In contrast, overexpression of Pht1;5 resulted in a lower P shoot:root ratio compared with wild type. Also, the rosette leaves of Pht1;5-overexpression plants senesced early and contained less P, whereas reproductive organs accumulated more P than those of wild type. Herein we report the molecular response of disrupting Pht1;5 expression on other factors known to modulate P distribution. The results reveal reciprocal mis-regulation of PHO1, miR399d, and At4 in the pht1;5 mutant and Pht1;5-overexpressor, consistent with the corresponding changes in P distribution in these lines. Together our studies reveal a complex role for Pht1;5 in regulating Pi homeostasis.  相似文献   

18.
《Journal of plant physiology》2014,171(3-4):340-348
Previous research using forward genetics approaches demonstrated that OsPHO2 regulates multiple phosphate-starvation responses in rice. In this work, we finely characterized two independent OsPHO2 knockout rice mutants under inorganic phosphate (Pi)-sufficient conditions. The ospho2 mutants exhibited defects in growth and reproductive development in the whole growing period. The cells in the elongation zone of ospho2 seedling roots were much shorter than those of the wild type. The phosphorus concentration in the blades of ospho2 mutants was 5.8-fold higher than those of wild-type plants, whereas it was only slightly higher in the sheaths, culms, spikelets, and seeds. Furthermore, Pi levels in the ospho2 mutants were highest in the oldest leaf and lowest in the youngest leaf, whereas there was no significant difference in the corresponding leaves of wild-type plants. These results suggest that ospho2 mutant phenotype results from a partial defect in Pi translocation and remobilization in the shoot of rice. This study thus provides evidence that OsPHO2, which functions at the downstream of OsPHF1, modulates Pi utilization by regulating the expression of Pht1 transporters in rice.  相似文献   

19.
The completion of the Arabidopsis thaliana genome has revealed that there are nine members of the Pht1 family of phosphate transporters in this species. As a step towards identifying the role of this gene family in phosphorus nutrition, we have isolated the promoter regions from each of these genes, and fused them to the reporter genes beta-glucuronidase and/or green fluorescent protein. These chimeric genes have been introduced into A. thaliana, and reporter gene expression has been assayed in plants grown in soil containing high and low concentrations of inorganic phosphate (Pi). Four of these promoters were found to direct reporter gene expression in the root epidermis, and were induced under conditions of phosphate deprivation in a manner similar to previously characterised Pht1 genes. Other members of this family, however, showed expression in a range of shoot tissues and in pollen grains, which was confirmed by RT-PCR. We also provide evidence that the root epidermally expressed genes are expressed most strongly in trichoblasts, the primary sites for uptake of Pi. These results suggest that this gene family plays a wider role in phosphate uptake and remobilisation throughout the plant than was previously believed.  相似文献   

20.
Yi K  Wu Z  Zhou J  Du L  Guo L  Wu Y  Wu P 《Plant physiology》2005,138(4):2087-2096
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号