首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Negative regulation of TGF-β signaling in development   总被引:4,自引:0,他引:4  
Chen YG  Meng AM 《Cell research》2004,14(6):441-449
The TGF-β superfamily members have important roles in controlling patterning and tissue formation in both invertebrates and vertebrates. Two types of signal transducers, receptors and Smads, mediate the signaling to regulate expression of their target genes. Despite of the relatively simple signal transduction pathway, many modulators have been found to contribute to a tight regulation of this pathway in a variety of mechanisms. This article reviews the negative regulation of TGF-β signaling with focus on its roles in vertebrate development.  相似文献   

2.
3.
4.
Intrauterine growth restriction is associated with impaired lung function in adulthood. It is unknown whether such impairment of lung function is linked to the transforming growth factor (TGF)-β system in the lung. Therefore, we investigated the effects of IUGR on lung function, expression of extracellular matrix (ECM) components and TGF-β signaling in rats. IUGR was induced in rats by isocaloric protein restriction during gestation. Lung function was assessed with direct plethysmography at postnatal day (P) 70. Pulmonary activity of the TGF-β system was determined at P1 and P70. TGF-β signaling was blocked in vitro using adenovirus-delivered Smad7. At P70, respiratory airway compliance was significantly impaired after IUGR. These changes were accompanied by decreased expression of TGF-β1 at P1 and P70 and a consistently dampened phosphorylation of Smad2 and Smad3. Furthermore, the mRNA expression levels of inhibitors of TGF-β signaling (Smad7 and Smurf2) were reduced, and the expression of TGF-β-regulated ECM components (e.g. collagen I) was decreased in the lungs of IUGR animals at P1; whereas elastin and tenascin N expression was significantly upregulated. In vitro inhibition of TGF-β signaling in NIH/3T3, MLE 12 and endothelial cells by adenovirus-delivered Smad7 demonstrated a direct effect on the expression of ECM components. Taken together, these data demonstrate a significant impact of IUGR on lung development and function and suggest that attenuated TGF-β signaling may contribute to the pathological processes of IUGR-associated lung disease.  相似文献   

5.
Javelaud D  Pierrat MJ  Mauviel A 《FEBS letters》2012,586(14):2016-2025
Hedgehog (HH) and TGF-β signals control various aspects of embryonic development and cancer progression. While their canonical signal transduction cascades have been well characterized, there is increasing evidence that these pathways are able to exert overlapping activities that challenge efficient therapeutic targeting. We herein review the current knowledge on HH signaling and summarize the recent findings on the crosstalks between the HH and TGF-β pathways in cancer.  相似文献   

6.
7.
TGF-β and BMP signaling in osteoblast differentiation and bone formation   总被引:1,自引:0,他引:1  
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.  相似文献   

8.
The transforming growth factor beta (TGF)-β signaling pathway and its modulators are involved in many aspects of cellular growth and differentiation in all metazoa. Although most of the core components of the pathway are highly conserved, many lineage-specific adaptations have been observed including changes regarding paralog number, presence and absence of modulators, and functional relevance for particular processes. In the parasitic jewel wasp Nasonia vitripennis, the bone morphogenetic proteins (BMPs), one of the major subgroups of the TGF-β superfamily, play a more fundamental role in dorsoventral (DV) patterning than in all other insects studied so far. However, Nasonia lacks the BMP antagonist Short gastrulation (Sog)/chordin, which is essential for polarizing the BMP gradient along the DV axis in most bilaterian animals. Here, we present a broad survey of TGF-β signaling in Nasonia with the aim to detect other lineage-specific peculiarities and to identify potential mechanisms, which explain how BMP-dependent DV pattering occurs in the early Nasonia embryo in the absence of Sog.  相似文献   

9.
One of the main complications in patients with liver fibrosis is the development of hepatocellular carcinoma (HCC). An understanding of the molecular mechanisms leading to HCC is important in order to be able to design new pharmacological agents serving either to prevent or mitigate the outcome of this malignancy. The transforming growth factor-beta (TGF-β) cytokine and its isoforms initiate a signaling cascade which is closely linked to liver fibrosis, cirrhosis and subsequent progression to HCC. Because of its role in these stages of disease progression, TGF-β appears to play a unique role in the molecular pathogenesis of HCC. Thus, it is a promising target for pharmacological treatment strategies. Recent studies have shown that inhibition of TGF-β signaling results in multiple synergistic down-stream effects which will likely improve the clinical outcome in HCC. We also review a number of TGF-β inhibitors, most of which are still in a preclinical stage of development, but may soon be available for trial in HCC patients. Hence, it is anticipated that there will soon be new agents available for clinical investigations to evaluate the role of the TGF-β-associated signaling in this deadly cancer.  相似文献   

10.

Background

The diversity of cell types and tissue types that originate throughout development derives from the differentiation potential of embryonic stem cells and somatic stem cells. While the former are pluripotent, and thus can give rise to a full differentiation spectrum, the latter have limited differentiation potential but drive tissue remodeling. Additionally cancer tissues also have a small population of self-renewing cells with stem cell properties. These cancer stem cells may arise through dedifferentiation from non-stem cells in cancer tissues, illustrating their plasticity, and may greatly contribute to the resistance of cancers to chemotherapies.

Scope of review

The capacity of the different types of stem cells for self-renewal, the establishment and maintenance of their differentiation potential, and the selection of differentiation programs are greatly defined by the interplay of signaling molecules provided by both the stem cells themselves, and their microenvironment, the niche. Here we discuss common and divergent roles of TGF-β family signaling in the regulation of embryonic, reprogrammed pluripotent, somatic, and cancer stem cells.

Major conclusions

Increasing evidence highlights the similarities between responses of normal and cancer stem cells to signaling molecules, provided or activated by their microenvironment. While TGF-β family signaling regulates stemness of normal and cancer stem cells, its effects are diverse and depend on the cell types and physiological state of the cells.

General significance

Further mechanistic studies will provide a better understanding of the roles of TGF-β family signaling in the regulation of stem cells. These basic studies may lead to the development of a new therapeutic or prognostic strategies for the treatment of cancers. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

11.
12.
13.
《Cellular signalling》2014,26(9):2030-2039
Transforming growth factor-β (TGF-β) signaling plays important roles in embryogenesis and tumorigenesis by controlling cell growth, differentiation and migration. The transmembrane prostate androgen-induced protein (TMEPAI) is elevated in several cancers. TMEPAI expression is induced by TGF-β signaling, and in turn, expression of TMEPAI negatively regulates TGF-β signaling, but the molecular mechanisms of TMEPAI induced TGF-β signaling inhibition are not well understood. Here we report that TMEPAI is localized to the lysosome and late endosome, and that association of TMEPAI with the E3 ubiquitin ligase Nedd4 is required for its transport to the lysosome. TMEPAI associates with the TGF-β type I receptor (TβRI) and promotes its degradation in the lysosome. Depletion of TMEPAI in A549 lung cancer cells inhibits cell proliferation, migration and invasion, while TMEPAI expression in nude mice promotes tumorigenesis. These results reveal a novel function for TMEPAI in regulating TGF-β signaling through the modulation of TβRI levels, which has important implications for cancer development in vivo.  相似文献   

14.
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions.Aberrant glycosylation can lead to uncontrolled cell proliferation,cell-matrix interactions,migration and differentiation,and has been shown to be involved in cancer and other diseases.The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream.This cellular transformation process,which is associated by morphological change,loss of epithelial traits and gain of mesenchymal markers,is triggered by the secreted cytokine transforming growth factor-β(TGF-β).TGF-βbioactivity is carefully regulated,and its effects on cells are mediated by its receptors on the cell surface.In this review,we first provide a brief overview of major types of glycans,namely,N-glycans,O-glycans,glycosphingolipids and glycosaminoglycans that are involved in cancer progression.Thereafter,we summarize studies on how the glycosylation of TGF-βsignaling components regulates TGF-βsecretion,bioavailability and TGF-βreceptor function.Then,we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer.Identifying and understanding the mechanisms by which glycosylation affects TGF-βsignaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.  相似文献   

15.
Transforming growth factor-β (TGF-β) is a central regulator in chronic liver disease contributing to all stages of disease progression from initial liver injury through inflammation and fibrosis to cirrhosis and hepatocellular carcinoma. Liver-damage-induced levels of active TGF-β enhance hepatocyte destruction and mediate hepatic stellate cell and fibroblast activation resulting in a wound-healing response, including myofibroblast generation and extracellular matrix deposition. Being recognised as a major profibrogenic cytokine, the targeting of the TGF-β signalling pathway has been explored with respect to the inhibition of liver disease progression. Whereas interference with TGF-β signalling in various short-term animal models has provided promising results, liver disease progression in humans is a process of decades with different phases in which TGF-β or its targeting might have both beneficial and adverse outcomes. Based on recent literature, we summarise the cell-type-directed double-edged role of TGF-β in various liver disease stages. We emphasise that, in order to achieve therapeutic effects, we need to target TGF-β signalling in the right cell type at the right time.  相似文献   

16.
Doyle JJ  Gerber EE  Dietz HC 《FEBS letters》2012,586(14):2003-2015
Transforming growth factor beta (TGFβ) is a multipotent cytokine that is sequestered in the extracellular matrix (ECM) through interactions with a number of ECM proteins. The ECM serves to concentrate latent TGFβ at sites of intended function, to influence the bioavailability and/or function of TGFβ activators, and perhaps to regulate the intrinsic performance of cell surface effectors of TGFβ signal propagation. The downstream consequences of TGFβ signaling cascades in turn provide feedback modulation of the ECM. This review covers recent examples of how genetic mutations in constituents of the ECM or TGFβ signaling cascade result in altered ECM homeostasis, cellular performance and ultimately disease, with an emphasis on emerging therapeutic strategies that seek to capitalize on this refined mechanistic understanding.  相似文献   

17.
Dietary fiber intake links to decreased risk of colorectal cancers. The underlying mechanisms remain unclear. Recently, we found that butyrate, a short-chain fatty acid produced in gut by bacterial fermentation of dietary fiber, enhances TGF-β signaling in rat intestinal epithelial cells (RIE-1). Furthermore, TGF-β represses inhibitors of differentiation (Ids), leading to apoptosis. We hypothesized that dietary fiber enhances TGF-β's growth inhibitory effects on gut epithelium via inhibition of Id2. In this study, Balb/c and DBA/2N mice were fed with a regular rodent chow or supplemented with a dietary fiber (20% pectin) and Smad3 level in gut epithelium was measured. In vitro, RIE-1 cells were treated with butyrate and TGF-β(1), and cell functions were evaluated. Furthermore, the role of Ids in butyrate- and TGF-β-induced growth inhibition was investigated. We found that pectin feeding increased Smad3 protein levels in the jejunum (1.47 ± 0.26-fold, P = 0.045, in Balb/c mice; 1.49 ± 0.19-fold, P = 0.016, in DBA/2N mice), and phospho-Smad3 levels (1.92 ± 0.27-fold, P = 0.009, in Balb/c mice; 1.83 ± 0.28-fold, P = 0.022, in DBA/2N mice). Butyrate or TGF-β alone inhibited cell growth and induced cell cycle arrest. The combined treatment of butyrate and TGF-β synergistically induced cell cycle arrest and apoptosis in RIE-1 cells and repressed Id2 and Id3 levels. Furthermore, knockdown of Id2 gene expression by use of small interfering RNA caused cell cycle arrest and apoptosis. We conclude that dietary fiber pectin enhanced Smad3 expression and activation in the gut. Butyrate and TGF-β induced cell cycle arrest and apoptosis, which may be mediated by repression of Id2. Our results implicate a novel mechanism of dietary fiber in reducing the risk of colorectal cancer development.  相似文献   

18.
Mammalian central nervous system neurons show asymmetry during early brain development that defines the elaborate function of neural circuitry (Kriegstein and Noctor, 2004). Many intracellular signaling pathways, which are important for the transition to the polarized state and the development of axons and dendrites, have been identified (Barnes and Polleux, 2009). How these pathways are initiated during neuronal development in vivo remained elusive until Yi et al.  相似文献   

19.
20.
Cell & Bioscience welcomes the submission of your best work for rapid open access publication. This is the official journal of the Society of Chinese Bioscientists in America (SCBA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号