首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-component signal transduction systems (TCSs), utilized extensively by bacteria and archaea, are involved in the rapid adaptation of the organisms to fluctuating environments. A typical TCS transduces the signal by a phosphorelay between the sensor histidine kinase and its cognate response regulator. Recently, small-sized proteins that link TCSs have been reported and are called "connectors." Their physiological roles, however, have remained elusive. SafA (sensor associating factor A) (formerly B1500), a small (65-amino-acid [65-aa]) membrane protein, is among such connectors and links Escherichia coli TCSs EvgS/EvgA and PhoQ/PhoP. Since the activation of the EvgS/EvgA system induces acid resistance, we examined whether the SafA-activated PhoQ/PhoP system is also involved in the acid resistance induced by EvgS/EvgA. Using a constitutively active evgS1 mutant for the activation of EvgS/EvgA, we found that SafA, PhoQ, and PhoP all contributed to the acid resistance phenotype. Moreover, EvgS/EvgA activation resulted in the accumulation of cellular RpoS in the exponential-phase cells in a SafA-, PhoQ-, and PhoP-dependent manner. This RpoS accumulation was caused by another connector, IraM, expression of which was induced by the activation of the PhoQ/PhoP system, thus preventing RpoS degradation by trapping response regulator RssB. Acid resistance assays demonstrated that IraM also participated in the EvgS/EvgA-induced acid resistance. Therefore, we propose a model of a signal transduction cascade proceeding from EvgS/EvgA to PhoQ/PhoP and then to RssB (connected by SafA and IraM) and discuss its contribution to the acid resistance phenotype.  相似文献   

2.
3.
The PhoQ/PhoP two-component signal transduction system is conserved in various Gram-negative bacteria and is often involved in the expression of virulence in pathogens. The small inner membrane protein SafA activates PhoQ in Escherichia coli independently from other known signals that control PhoQ activity. We have previously shown that SafA directly interacts with the sensor domain of the periplasmic region of PhoQ (PhoQ-SD) for activation, and that a D179R mutation in PhoQ-SD attenuates PhoQ activation by SafA. In this study, structural comparison of wild-type PhoQ-SD and D179R revealed a difference in the cavity (SD (sensory domain) pocket) found in the central core of this domain. This was the only structural difference between the two proteins. Site-directed mutagenesis of the residues surrounding the SD pocket has supported the SD pocket as a site involved in PhoQ activity. Furthermore, the SD pocket has also been shown to be involved in SafA-mediated PhoQ control.  相似文献   

4.
5.
6.
Recognition of antimicrobial peptides by a bacterial sensor kinase   总被引:24,自引:0,他引:24  
  相似文献   

7.
8.
9.
Crystal structure of a functional dimer of the PhoQ sensor domain   总被引:1,自引:0,他引:1  
The PhoP-PhoQ two-component system is a well studied bacterial signaling system that regulates virulence and stress response. Catalytic activity of the histidine kinase sensor protein PhoQ is activated by low extracellular concentrations of divalent cations such as Mg2+, and subsequently the response regulator PhoP is activated in turn through a classic phosphotransfer pathway that is typical in such systems. The PhoQ sensor domains of enteric bacteria contain an acidic cluster of residues (EDDDDAE) that has been implicated in direct binding to divalent cations. We have determined crystal structures of the wild-type Escherichia coli PhoQ periplasmic sensor domain and of a mutant variant in which the acidic cluster was neutralized to conservative uncharged residues (QNNNNAQ). The PhoQ domain structure is similar to that of DcuS and CitA sensor domains, and this PhoQ-DcuS-CitA (PDC) sensor fold is seen to be distinct from the superficially similar PAS domain fold. Analysis of the wild-type structure reveals a dimer that allows for the formation of a salt bridge across the dimer interface between Arg-50' and Asp-179 and with nickel ions bound to aspartate residues in the acidic cluster. The physiological importance of the salt bridge to in vivo PhoQ function has been confirmed by mutagenesis. The mutant structure has an alternative, non-physiological dimeric association.  相似文献   

10.
Despite the presence of highly conserved signalling modules, significant cross-communication between different two-component systems has only rarely been observed. Domain swapping and the characterization of liberated signalling modules enabled us to characterize in vitro the protein domains that mediate specificity and are responsible for the high fidelity in the phosphorelay of the unorthodox Bvg and Evg two-component systems. Under equimolar conditions, significant in vitro phosphorylation of purified BvgA and EvgA proteins was only obtained by their histidine kinases, BvgS and EvgS respectively. One hybrid histidine kinase consisting of the BvgS transmitter and HPt domains and of the EvgS receiver domain (BvgS-TO-EvgS-R) was able to phosphorylate BvgA but not EvgA. In contrast, the hybrid protein consisting of the BvgS transmitter and the EvgS receiver and HPt domains (BvgS-T-EvgS-RO) was unable to phosphorylate BvgA but efficiently phosphorylated EvgA. These results demonstrate that the C-terminal HPt domains of the sensor proteins endow the unorthodox two-component systems with a high specificity for the corresponding regulator protein. In the case of the response regulators, the receiver but not the output domains contribute to the specific interaction with the histidine kinases, because a hybrid protein consisting of the EvgA receiver and the BvgA output domain could only be phosphorylated by the EvgS protein.  相似文献   

11.
12.
Biophysical and biochemical properties of signalling proteins or domains derived from the unorthodox EvgAS and BvgAS two-component phosphorelay systems of Escherichia coli and Bordetella pertussis were investigated. Oligomerization of the effector proteins EvgA and BvgA and of truncated EvgS and BvgS derived signalling proteins containing the receiver and histidine containing phosphotransfer (HPt) domains or comprising only the HPt domains were characterized by native gel electrophoresis, gel permeation experiments and analytical ultracentrifugation. The results obtained by the different methods are consistent with non-phosphorylated EvgA and BvgA proteins being dimers in solution with a dissociation constant significantly below 1 microM. In contrast, all sensor derived domains of EvgS and BvgS were observed to be monomers in vitro. No indications for a phosphorylation induced stimulation of oligomerization of the C-terminal histidine kinase domains could be detected. In agreement with these data, surface plasmon resonance studies revealed a 2:1 stoichiometry in the interaction of EvgA with the immobilized EvgS HPt domain and an affinity constant of 1. 24x10(6) M(-1).  相似文献   

13.
14.
15.
The PhoP/PhoQ two-component system controls the expression of essential virulence traits in the pathogenic bacterium Salmonella enterica serovar Typhimurium. Environmental deprivation of Mg(2+) activates the PhoP/PhoQ signal transduction cascade, which results in an increased expression of genes necessary for survival inside the host. It was previously demonstrated that the interaction of Mg(2+) with the periplasmic domain of PhoQ promotes a conformational change in the sensor protein that leads to the down-regulation of PhoP-activated genes. We have now examined the regulatory effect of Mg(2+) on the putative activities of the membrane-bound PhoQ. We demonstrated that Mg(2+) promotes a phospho-PhoP phosphatase activity in the sensor protein. This activity depends on the intactness of the conserved His-277, suggesting that the phosphatase active site overlaps the H box. The integrity of the N-terminal domain of PhoQ was essential for the induction of the phosphatase activity, because Mg(2+) did not stimulate the release of inorganic phosphate from phospho-PhoP in a fusion protein that lacks this sensing domain. These findings reveal that the sensor PhoQ harbors a phospho-PhoP phosphatase activity, and that this phosphatase activity is the target of the extracellular Mg(2+)-triggered regulation of the PhoP/PhoQ system.  相似文献   

16.
17.
18.
19.
20.
The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K+) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K+ in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K+ pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i) KdpD/KdpE production is correlated with enhanced virulence and survival, (ii) KdpE regulates a range of virulence loci through direct promoter binding, and (iii) KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system''s accessory components (which allow TCS fine-tuning or crosstalk) provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K+ regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号