首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining how genetic diversity is structured between populations that span the divergence continuum from populations to biological species is key to understanding the generation and maintenance of biodiversity. We investigated genetic divergence and gene flow in eight lineages of birds with a trans‐Beringian distribution, where Asian and North American populations have likely been split and reunited through multiple Pleistocene glacial cycles. Our study transects the speciation process, including eight pairwise comparisons in three orders (ducks, shorebirds and passerines) at population, subspecies and species levels. Using ultraconserved elements (UCEs), we found that these lineages represent conditions from slightly differentiated populations to full biological species. Although allopatric speciation is considered the predominant mode of divergence in birds, all of our best divergence models included gene flow, supporting speciation with gene flow as the predominant mode in Beringia. In our eight lineages, three were best described by a split‐migration model (divergence with gene flow), three best fit a secondary contact scenario (isolation followed by gene flow), and two showed support for both models. The lineages were not evenly distributed across a divergence space defined by gene flow (M) and differentiation (FST), instead forming two discontinuous groups: one with relatively shallow divergence, no fixed single nucleotide polymorphisms (SNPs), and high rates of gene flow between populations; and the second with relatively deeply divergent lineages, multiple fixed SNPs, and low gene flow. Our results highlight the important role that gene flow plays in avian divergence in Beringia.  相似文献   

2.
This article documents the addition of 299 microsatellite marker loci and nine pairs of single-nucleotide polymorphism (SNP) EPIC primers to the Molecular Ecology Resources (MER) Database. Loci were developed for the following species: Alosa pseudoharengus, Alosa aestivalis, Aphis spiraecola, Argopecten purpuratus, Coreoleuciscus splendidus, Garra gotyla, Hippodamia convergens, Linnaea borealis, Menippe mercenaria, Menippe adina, Parus major, Pinus densiflora, Portunus trituberculatus, Procontarinia mangiferae, Rhynchophorus ferrugineus, Schizothorax richardsonii, Scophthalmus rhombus, Tetraponera aethiops, Thaumetopoea pityocampa, Tuta absoluta and Ugni molinae. These loci were cross-tested on the following species: Barilius bendelisis, Chiromantes haematocheir, Eriocheir sinensis, Eucalyptus camaldulensis, Eucalyptus cladocalix, Eucalyptus globulus, Garra litaninsis vishwanath, Garra para lissorhynchus, Guindilla trinervis, Hemigrapsus sanguineus, Luma chequen. Guayaba, Myrceugenia colchagüensis, Myrceugenia correifolia, Myrceugenia exsucca, Parasesarma plicatum, Parus major, Portunus pelagicus, Psidium guayaba, Schizothorax richardsonii, Scophthalmus maximus, Tetraponera latifrons, Thaumetopoea bonjeani, Thaumetopoea ispartensis, Thaumetopoea libanotica, Thaumetopoea pinivora, Thaumetopoea pityocampa ena clade, Thaumetopoea solitaria, Thaumetopoea wilkinsoni and Tor putitora. This article also documents the addition of nine EPIC primer pairs for Euphaea decorata, Euphaea formosa, Euphaea ornata and Euphaea yayeyamana.  相似文献   

3.
Tropical forests have undergone repeated fragmentation and expansion during Pleistocene glacial and interglacial periods, respectively. The effects of this repeated forest fragmentation in driving vicariance in tropical taxa have been well studied. However, relatively little is known about how often this process results in allopatric speciation, since it may be inhibited by recurrent gene flow during repeated secondary contact, or to what extent Pleistocene‐dated speciation results from ecological specialization in the face of gene flow. Here, divergence times and gene flow between three closely‐related mosquito species of the Anopheles dirus species complex endemic to the forests of Southeast Asia, are inferred using coalescent based Bayesian analysis. An Isolation with Migration model is applied to sequences of two mitochondrial and three nuclear genes, and 11 microsatellites. The divergence of An. scanloni has occurred despite unidirectional nuclear gene flow from this species into An. dirus. The inferred asymmetric gene flow may result from the unique evolutionary adaptation of An. scanloni to limestone karst habitat, and therefore the fitness advantage of this species over An. dirus in regions of sympatry. Mitochondrial introgression has led to the complete replacement of An. dirus haplotypes with those of An. baimaii through a recent (~62 kya) selective sweep. Speciation of An. baimaii and An. dirus is inferred to have involved allopatric divergence throughout much of the Pleistocene. Secondary contact and bidirectional gene flow has occurred only within the last 100 000 years, by which time the process of allopatric speciation seems to have been largely completed.  相似文献   

4.
物种形成过程是生物多样性形成的基础, 长期以来一直是进化生物学的中心议题之一。传统的异域物种形成理论认为, 地理隔离是物种分化的主要决定因子, 物种形成只有在种群之间存在地理隔离的情况下才能发生。近年来, 随着种群基因组学的发展和溯祖理论分析方法的完善, 种群间存在基因流情况下的物种形成成为进化生物学领域新的研究焦点。物种形成过程中是否有基因流的发生?基因流如何影响物种的形成与分化?基因流存在条件下物种形成的生殖隔离机制是什么?根据已发表的相关文献资料, 作者综述了当前物种形成研究中基因流的时间和空间分布模式、基因流对物种分化的影响以及生殖隔离机制形成等问题, 指出基因流存在条件下的物种形成可能是自然界普遍发生的一种模式。  相似文献   

5.
Even in cases in which geographic isolation appears to have driven the speciation of regional endemics, range shifts during the Pleistocene climatic oscillations may also have influenced their evolutionary history. Elucidating speciation history can provide novel insights into evolutionary dynamics following climatic oscillations. We demonstrated a sister relationship between the Japanese alpine endemic Cardamine nipponica and the currently allopatric, widespread arctic-alpine Cardamine?bellidifolia (Brassicaceae) based on internal transcribed spacer (ITS) sequences and 10 other nuclear genes. Speciation history was inferred using demographic parameters under the isolation with migration model. The estimated demographic parameters showed that the population size of C. nipponica was similar to that of C. bellidifolia and that gene flow occurred exclusively from C. nipponica to C. bellidifolia after speciation. The inferred speciation history, which included gene flow, suggests that geographic barriers between the peripheral C. nipponica and the widespread C. bellidifolia were reduced during the Pleistocene. The asymmetric introgression implies that genetic isolation may have been involved in the speciation of C. nipponica. Our results suggest that even currently allopatric species may not have diverged solely under geographic isolation, and that their evolutionary history may have been influenced by Pleistocene range dynamics.  相似文献   

6.
SUMMARY. 1. The life history was compared between mainland and island congeners of Protohermes (Megaloptera: Corydalidae) and also between those of Euphaea (Odonata: Euphaeidae). Larvae of these genera coexisted in stream riffles, and prey availability for them was assessed to examine the effects on their body size at maturation.
2. Body size of P. costalis on the 'mainland'. Taiwan, was larger than that of an insular congener, P . sp., on Iriomotc and Ishigaki Islands about 200 km east from Taiwan. Insular dwarfism also occurred between E. formosa on the mainland and E. yayeyamana on the islands. All species had an annual life cycle.
3. Prey availability was much lower in the island streams than in mainland streams throughout the year. Convergence of insular dwarfism in these phylogenetically distant but ecologically similar taxa (both predatory insects) suggested that prey availability is an important factor affecting their body size determination.
4. Seasonal changes in body size occurred within a population of Euphaea which lacked synchronous emergence. Adults emerging from larvae spending their late instars in the warm season were smaller than those in the cold season. However, the size differences between species always exceeded the range of such intraspecific variation.
5. Dwarfism in E. yayeyamana was probably achieved by decreasing the size of first-instar larvae without changing the number of instars and with the size ratio at each moult constant. The mechanisms producing the dwarf form of Protohermes are also discussed.  相似文献   

7.
Genomewide analysis of genetic divergence is critically important in understanding the genetic processes of allopatric speciation. We sequenced RAD tags of 131 Asian seabass individuals of six populations from South‐East Asia and Australia/Papua New Guinea. Using 32 433 SNPs, we examined the genetic diversity and patterns of population differentiation across all the populations. We found significant evidence of genetic heterogeneity between South‐East Asian and Australian/Papua New Guinean populations. The Australian/Papua New Guinean populations showed a rather lower level of genetic diversity. FST and principal components analysis revealed striking divergence between South‐East Asian and Australian/Papua New Guinean populations. Interestingly, no evidence of contemporary gene flow was observed. The demographic history was further tested based on the folded joint site frequency spectrum. The scenario of ancient migration with historical population size changes was suggested to be the best fit model to explain the genetic divergence of Asian seabass between South‐East Asia and Australia/Papua New Guinea. This scenario also revealed that Australian/Papua New Guinean populations were founded by ancestors from South‐East Asia during mid‐Pleistocene and were completely isolated from the ancestral population after the last glacial retreat. We also detected footprints of local selection, which might be related to differential ecological adaptation. The ancient gene flow was examined and deemed likely insufficient to counteract the genetic differentiation caused by genetic drift. The observed genomic pattern of divergence conflicted with the ‘genomic islands’ scenario. Altogether, Asian seabass have likely been evolving towards allopatric speciation since the split from the ancestral population during mid‐Pleistocene.  相似文献   

8.
Climate oscillations during the Quaternary altered the distributions of terrestrial animals at a global scale. In mountainous regions, temperature fluctuations may have led to shifts in range size and population size as species tracked their shifting habitats upslope or downslope. This creates the potential for both allopatric speciation and population size fluctuations, as species are either constrained to smaller patches of habitat at higher elevations or able to expand into broader areas at higher latitudes. We considered the impact of climate oscillations on three pairs of marsupial species from the Andes (Thylamys opossums) by inferring divergence times and demographic changes. We compare four different divergence dating approaches, using anywhere from one to 26 loci. Each pair comprises a northern (tropical) lineage and a southern (subtropical to temperate) lineage. We predicted that divergences would have occurred during the last interglacial (LIG) period approximately 125 000 years ago and that population sizes for northern and southern lineages would either contract or expand, respectively. Our results suggest that all three north–south pairs diverged in the late Pleistocene during or slightly after the LIG. The three northern lineages showed no signs of population expansion, whereas two southern lineages exhibited dramatic, recent expansions. We attribute the difference in responses between tropical and subtropical lineages to the availability of ‘montane‐like’ habitats at lower elevations in regions at higher latitudes. We conclude that climate oscillations of the late Quaternary had a powerful impact on the evolutionary history of some of these species, both promoting speciation and leading to significant population size shifts.  相似文献   

9.
Mayr's best recognized scientific contributions include the biological species concept and the theory of geographic speciation. In the latter, reproductive isolation evolves as an incidental by‐product of genetic divergence between allopatric populations. Mayr noted that divergent natural selection could accelerate speciation, but also argued that gene flow so strongly retards divergence that, even with selection, non‐allopatric speciation is unlikely. However, current theory and data demonstrate that substantial divergence, and even speciation, in the face of gene flow is possible. Here, I attempt to connect some opposing views about speciation by integrating Mayr's ideas about the roles of ecology and geography in speciation with current data and theory. My central premise is that the speciation process (i.e. divergence) is often continuous, and that the opposing processes of selection and gene flow interact to determine the degree of divergence (i.e. the degree of progress towards the completion of speciation). I first establish that, in the absence of gene flow, divergent selection often promotes speciation. I then discuss how population differentiation in the face of gene flow is common when divergent selection occurs. However, such population differentiation does not always lead to the evolution of discontinuities, strong reproductive isolation, and thus speciation per se. I therefore explore the genetic and ecological circumstances that facilitate speciation in the face of gene flow. For example, particular genetic architectures or ecological niches may tip the balance between selection and gene flow strongly in favour of selection. The circumstances allowing selection to overcome gene flow to the extent that a discontinuity develops, and how often these circumstances occur, are major remaining questions in speciation research. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 26–46.  相似文献   

10.
Evolutionary biology often seeks to decipher the drivers of speciation, and much debate persists over the relative importance of isolation and gene flow in the formation of new species. Genetic studies of closely related species can assess if gene flow was present during speciation, because signatures of past introgression often persist in the genome. We test hypotheses on which mechanisms of speciation drove diversity among three distinct lineages of desert tortoise in the genus Gopherus. These lineages offer a powerful system to study speciation, because different biogeographic patterns (physical vs. ecological segregation) are observed at opposing ends of their distributions. We use 82 samples collected from 38 sites, representing the entire species' distribution and generate sequence data for mtDNA and four nuclear loci. A multilocus phylogenetic analysis in *BEAST estimates the species tree. RNA‐seq data yield 20,126 synonymous variants from 7665 contigs from two individuals of each of the three lineages. Analyses of these data using the demographic inference package ?a?i serve to test the null hypothesis of no gene flow during divergence. The best‐fit demographic model for the three taxa is concordant with the *BEAST species tree, and the ?a?i analysis does not indicate gene flow among any of the three lineages during their divergence. These analyses suggest that divergence among the lineages occurred in the absence of gene flow and in this scenario the genetic signature of ecological isolation (parapatric model) cannot be differentiated from geographic isolation (allopatric model).  相似文献   

11.
Quantifying the role of gene flow during the divergence of closely related species is crucial to understanding the process of speciation. We collected DNA sequence data from 20 loci (one mitochondrial, 13 autosomal, and six sex‐linked) for population samples of Lazuli Buntings (Passerina amoena) and Indigo Buntings (Passerina cyanea) (Aves: Cardinalidae) to test explicitly between a strict allopatric speciation model and a model in which divergence occurred despite postdivergence gene flow. Likelihood ratio tests of coalescent‐based population genetic parameter estimates indicated a strong signal of postdivergence gene flow and a strict allopatric speciation model was rejected. Analyses of partitioned datasets (mitochondrial, autosomal, and sex‐linked) suggest the overall gene flow patterns are driven primarily by autosomal gene flow, as there is no evidence of mitochondrial gene flow and we were unable to reject an allopatric speciation model for the sex‐linked data. This pattern is consistent with either a parapatric divergence model or repeated periods of allopatry with gene flow occurring via secondary contact. These results are consistent with the low fitness of female avian hybrids under Haldane's rule and demonstrate that sex‐linked loci likely are important in the initial generation of reproductive isolation, not just its maintenance.  相似文献   

12.
Two‐wing flyingfish (Exocoetus spp.) are widely distributed, epipelagic, mid‐trophic organisms that feed on zooplankton and are preyed upon by numerous predators (e.g., tunas, dolphinfish, tropical seabirds), yet an understanding of their speciation and systematics is lacking. As a model of epipelagic fish speciation and to investigate mechanisms that increase biodiversity, we studied the phylogeny and biogeography of Exocoetus, a highly abundant holoepipelagic fish taxon of the tropical open ocean. Morphological and molecular data were used to evaluate the phylogenetic relationships, species boundaries, and biogeographic patterns of the five putative Exocoetus species. We show that the most widespread species (E. volitans) is sister to all other species, and we find no evidence for cryptic species in this taxon. Sister relationship between E. monocirrhus (Indo‐Pacific) and E. obtusirostris (Atlantic) indicates the Isthmus of Panama and/or Benguela Barrier may have played a role in their divergence via allopatric speciation. The sister species E. peruvianus and E. gibbosus are found in different regions of the Pacific Ocean; however, our molecular results do not show a clear distinction between these species, indicating recent divergence or ongoing gene flow. Overall, our phylogeny reveals that the most spatially restricted species are more recently derived, suggesting that allopatric barriers may drive speciation, but subsequent dispersal and range expansion may affect the distributions of species.  相似文献   

13.
The Mediterranean basin is an area of high diversity and endemicity, but the age and origin of its fauna are still largely unknown. Here we use species-level phylogenies based on approximately 1300 base pairs of the genes 16S rRNA and cytochrome oxidase I to establish the relationships of 27 of the 34 endemic Iberian species of diving beetles in the family Dytiscidae, and to investigate their level of divergence. Using a molecular clock approach, 18-19 of these species were estimated to be of Pleistocene origin, with four to six of them from the Late Pleistocene ( approximately 100 000 years). A second, lower speciation frequency peak was assigned to Late Miocene or Early Pliocene. Analysis of the distributional ranges showed that endemic species placed in the tip nodes of the trees are significantly more likely to be allopatric with their sisters than endemic species at lower node levels. Allopatric sister species are also significantly younger than sympatric clades, in agreement with an allopatric mode of speciation and limited subsequent range movement. These results strongly suggest that for some taxa Iberian populations were isolated during the Pleistocene long enough to speciate, and apparently did not expand their ranges to recolonize areas north of the Pyrenees. This is in contradiction to observations from fossil beetles in areas further north, which document large range movements associated with the Pleistocene glacial cycles hypothesized to suppress population isolation and allopatric speciation.  相似文献   

14.
The Indo-Pacific region has arguably been the most important area for the formulation of theories about biogeography and speciation, but modern studies of the tempo, mode and magnitude of diversification across this region are scarce. We study the biogeographic history and characterize levels of diversification in the wide-ranging passerine bird Erythropitta erythrogaster using molecular, phylogeographic and population genetics methods, as well as morphometric and plumage analyses. Our results suggest that E. erythrogaster colonized the Indo-Pacific during the Pleistocene in an eastward direction following a stepping stone pathway, and that sea-level fluctuations during the Pleistocene may have promoted gene flow only locally. A molecular species delimitation test suggests that several allopatric island populations of E. erythrogaster may be regarded as species. Most of these putative new species are further characterized by diagnostic differences in plumage. Our study reconfirms the E. erythrogaster complex as a ‘great speciator’: it represents a complex of up to 17 allopatrically distributed, reciprocally monophyletic and/or morphologically diagnosable species that originated during the Pleistocene. Our results support the view that observed latitudinal gradients of genetic divergence among avian sister species may have been affected by incomplete knowledge of taxonomic limits in tropical bird species.  相似文献   

15.
One of the challenges in evolutionary biology is to understand the evolution of speciation with incomplete reproductive isolation as many taxa have continued gene flow both during and after speciation. Comparison of population structure between sympatric and allopatric populations can reveal specific introgression and determine if introgression occurs in a unidirectional or bidirectional manner. Simple sequence repeat markers were used to characterize sympatric and allopatric population structure of plant species, Elymus alaskanus (Scribn. and Merr.) Löve, E. caninus L., E. fibrosus (Schrenk) Tzvel., and E. mutabilis (Drobov) Tzvelev. Our results showed that genetic diversity (HE) at species level is E. caninus (0.5355) > E. alaskanus (0.4511) > E. fibrosus (0.3924) > E. mutabilis (0.3764), suggesting that E. caninus and E. alaskanus are more variable than E. fibrosus and E. mutabilis. Gene flow between species that occurs within the same geographic locations versus gene flow between populations within species was compared to provide evidence of introgression. Our results indicated that gene flow between species that occur within the same geographic location is higher than that between populations within species, suggesting that gene flow resulting from introgressive hybridization might have occurred among the sympatric populations of these species, and may play an important role in partitioning of genetic diversity among and within populations. The migration rate from E. fibrosus to E. mutabilis is highest (0.2631) among the four species studied. Asymmetrical rates of gene flow among four species were also observed. The findings highlight the complex evolution of these four Elymus species.  相似文献   

16.
Vicariance and dispersal can strongly influence population genetic structure and allopatric speciation, but their importance in the origin of marine biodiversity is unresolved. In transitional estuarine environments, habitat discreteness and dispersal barriers could enhance divergence and provide insight to evolutionary mechanisms underlying marine and freshwater biodiversity. We examined this by assessing phylogeographic structure in the widespread amphipod Gammarus tigrinus across 13 estuaries spanning its northwest Atlantic range from Quebec to Florida. Mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 1 phylogenies supported deep genetic structure consistent with Pliocene separation and cryptic northern and southern species. This break occurred across the Virginian-Carolinian coastal biogeographic zone, where an oceanographic discontinuity may restrict gene flow. Ten estuarine populations of the northern species occurred in four distinct clades, supportive of Pleistocene separation. Glaciation effects on genetic structure of estuarine populations are largely unknown, but analysis of molecular variance (AMOVA) supported a phylogeographic break among clades in formerly glaciated versus nonglaciated areas across Cape Cod, Massachusetts. This finding was concordant with patterns in other coastal species, though there was no significant relationship between latitude and genetic diversity. This supports Pleistocene vicariance events and divergence of clades in different northern glacial refugia. AMOVA results and private haplotypes in most populations support an allopatric distribution across estuaries. Clade mixture zones are consistent with historical colonization and human-mediated transfer. An isolation-by-distance model of divergence was detected after we excluded a suspected invasive haplotype in the St. Lawrence estuary. The occurrence of cryptic species and divergent population structure support limited dispersal, dispersed habitat distribution, and historical factors as important determinants of estuarine speciation and diversification.  相似文献   

17.
Butterflies of the genus Polyura form a widespread tropical group distributed from Pakistan to Fiji. The rare endemic Polyura epigenes Godman & Salvin, 1888 from the Solomon Islands archipelago represents a case of marked island polymorphism. We sequenced museum specimens of this species across its geographic range to study the phylogeography and genetic differentiation of populations in the archipelago. We used the Bayesian Poisson tree processes and multispecies coalescent models, to study species boundaries. We also estimated divergence times to investigate the biogeographic history of populations. Our molecular species delimitation and nuclear DNA network analyses unambiguously indicate that Malaita populations form an independent metapopulation lineage, as defined in the generalized lineage concept. This lineage, previously ranked as a subspecies, is raised to species rank under the name Polyura bicolor Turlin & Sato, 1995  stat. nov. Divergence time estimates suggest that this lineage split from its sister taxon in the late Pleistocene. At this time, the bathymetric isolation of Malaita from the rest of the archipelago probably prevented gene flow during periods of lower sea level, thereby fostering allopatric speciation. The combination of molecular species delimitation methods, morphological comparisons, and divergence time estimation is useful to study lineage diversification across intricate geographic regions.  相似文献   

18.
Cave organisms occupy a special place in evolutionary biology because convergent morphologies of many species demonstrate repeatability in evolution even as they obscure phylogenetic relationships. The origin of specialized cave-dwelling species also raises the issue of the relative importance of isolation vs. natural selection in speciation. Two alternative hypotheses describe the origin of subterranean species. The 'climate-relict' model proposes allopatric speciation after populations of cold-adapted species become stranded in caves due to climate change. The 'adaptive-shift' model proposes parapatric speciation driven by divergent selection between subterranean and surface habitats. Our study of the Tennessee cave salamander complex shows that the three nominal forms (Gyrinophilus palleucus palleucus, G. p. necturoides, and G. gulolineatus) arose recently and are genealogically nested within the epigean (surface-dwelling) species, G. porphyriticus. Short branch lengths and discordant gene trees were consistent with a complex history involving gene flow between diverging forms. Results of coalescent-based analysis of the distribution of haplotypes among groups reject the allopatric speciation model and support continuous or recurrent genetic exchange during divergence. These results strongly favour the hypothesis that Tennessee cave salamanders originated from spring salamanders via divergence with gene flow.  相似文献   

19.
Allopatry and allopatric speciation can arise through two different mechanisms: vicariance or colonization through dispersal. Distinguishing between these different allopatric mechanisms is difficult and one of the major challenges in biogeographical research. Here, we address whether allopatric isolation in an endemic island lizard is the result of vicariance or dispersal. We estimated the amount and direction of gene flow during the divergence of isolated islet populations and subspecies of the endemic Skyros wall lizard Podarcis gaigeae, a phenotypically variable species that inhabits a major island and small islets in the Greek archipelago. We applied isolation-with-migration models to estimate population divergence times, population sizes and gene flow between islet-mainland population pairs. Divergence times were significantly correlated with independently estimated geological divergence times. This correlation strongly supports a vicariance scenario where islet populations have sequentially become isolated from the major island. We did not find evidence for significant gene flow within P. g. gaigeae. However, gene-flow estimates from the islet to the mainland populations were positively affected by islet area and negatively by distance between the islet and mainland. We also found evidence for gene flow from one subspecies (P. g. weigandi) into another (P. g. gaigeae), but not in the other direction. Ongoing gene flow between the subspecies suggests that even in this geographically allopatric scenario with the sea posing a strong barrier to dispersal, divergence with some gene flow is still feasible.  相似文献   

20.
Abstract.— The Pleistocene Epoch has been frequently cited as a period of intense speciation for a significant portion of temperate continental biotas. To critically assess the role of Pleistocene glaciations on the evolution of the freshwater fish clade Micropterus , we use a phylogenetic analysis of complete gene sequences from two mitochondrial genes (cytochrome b and ND2), and a fossil calibration of the molecular clock to estimate ages of speciation events and rates of diversification. The absence of substantial morphological and ecological divergence together with endemism of five of the eight species in North American tributaries of the Gulf of Mexico may be interpreted as the result of a recent Pleistocene origin for these species. Speciation dates in Micropterus range from 1.01 ± 0.32 to 11.17 ± 1.02 million years ago. Only one speciation event is dated to the Pleistocene, and rates of diversification are not significantly variable in Micropterus. The premise that the Pleistocene was an exceptional period of speciation in Micropterus is not supported. Instead, a Gulf Coast allopatric speciation model is proposed, and predicts periods of dynamic speciation driven by sea level fluctuations in the Late Miocene and Pliocene. The Pleistocene, however, was a period of significant intraspecific mitochondrial lineage diversification. The application of the Gulf Coast allopatric speciation model to the remaining aquatic fauna of the Gulf of Mexico coast in North America will rely on robust phylogenetic hypotheses and accurate age estimations of speciation events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号