首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite their deeply conserved function among vertebrates, ectodysplasin (Eda) signalling genes are involved in microevolutionary change in humans and sticklebacks. If such a dual role is common, Eda signalling genes constitute hotspots for morphological evolution. Variation in sculpin (Cottus) skin prickling and body shape resembles patterns caused by variation in Eda signalling in sticklebacks. We mapped Eda signalling genes and performed quantitative trait locus mapping in crosses between Cottus rhenanus and Cottus perifretum. A genomic region containing the Eda receptor (Edar) was strongly associated with prickling and contributed to shape. The expression of Edar in developing prickles and skeletal elements in Cottus was confirmed by in situ hybridization. Coding sequence changes between Edar alleles in C. rhenanus and C. perifretum exceeded sequence differentiation in other vertebrates. However, it is likely that additional genetic elements besides coding changes affect the phenotypic variation. Although the phenotype in a natural hybrid lineage between C. rhenanus and C. perifretum resembles C. perifretum, the respective coding Edar alleles are not fully fixed (88.6%). Hence, our results support an involvement of Eda signalling in microevolutionary changes, but imply that the Edar gene is affected by multiple evolutionary processes that vary among freshwater sculpins.  相似文献   

2.
3.
Renaut S 《Molecular ecology》2011,20(7):1320-1321
Natural hybridization between closely related taxa is frequent in many organismal groups, yet it has long been perceived as a force preventing diversification and speciation, especially so in animals. In recent years, growing evidence in favour of hybridization facilitating adaptive divergence has accumulated ( Mallet 2007 ; Mavárez & Linares 2008 ; Nolte & Tautz 2010 ). Homoploid hybrid speciation (the formation of hybrid lineages without changes in chromosome number) occurs when distinct species come into contact, hybridize, and at least in part of their range, produce hybrid swarms. If the hybrid genotypes can then colonize areas of the adaptive landscape inaccessible to ancestral species, they may eventually form new distinct lineages, reproductively isolated from their ancestors. Invasive sculpins (Cottus sp.) are one of a few good examples of homoploid hybrid speciation in animals. In this issue, Stemshorn et al. (2011) identified three distinct hybrid lineages, which have emerged out of a secondary contact situation of Cottus rhenanus and Cottus perifretum. Hybrids have recently invaded large river habitats unsuitable to ancestral species. Through the use of genetic mapping, the authors established that contrary to expectations, chromosomal rearrangements were not apparent in the hybrid lineages. In addition, different population genetic models were tested and the results suggest that contemporary gene flow from ancestral species represents an important component of the system. As such, recent and ongoing hybridization appears to be promoting the appearance of phenotypes adapted to novel environments. The examination of partially isolated lineages such as invasive hybrid sculpins should permit to identify early adaptive genetic changes before they become confounded by differences arising once speciation is complete.  相似文献   

4.
Sexual selection can lead to the rapid evolution of premating hybridization barriers and allows accelerated diversification and speciation within an evolutionary lineage. Especially during early stages of divergence, hybridization may impede further divergence, which strongly depends on the reproductive success of hybrids. Behavioural sterility of hybrids can limit or even prevent homogenizing gene flow. In this study, we investigated the attractiveness of male courtship songs for females of the grasshopper species Chorthippus biguttulus and C. brunneus and their interspecific F1 and F2 hybrids. Song preferences of females of both species are highly species specific and differ in three parameters: shape of the preference function, preference for syllable pattern and phrase duration. F1 hybrid females of both reciprocal crosses as well as F2 hybrid females resembled closely pure C. biguttulus females in respect of shape of the preference function and preference for syllable pattern, while preference for phrase duration showed an intermediate expression. This resulted in song preferences of hybrid females that closely resembled those of one parental species, that is C. biguttulus females. Such strong dominance effects were rarely reported so far. They represent an effective barrier limiting gene flow between the two species, since hybrid females will backcross to only one parental species and discriminate against hybrid males, which are behaviourally sterile. Such taxon‐specific modes of inheritance may have facilitated the rapid divergence of acoustically communicating grasshoppers of the species group of Chorthippus biguttulus. Our findings have novel implications on the expression of neuronal filters and the evolution of complex courtship signals.  相似文献   

5.
Fish abundance surveys in the Rhine system have shown in the past two decades that there is a rapid upriver invasion of a freshwater sculpin of the genus Cottus. These fish are found in habitats that are atypical for the known species Cottus gobio, which is confined to small cold streams within the Rhine drainage. Phylogeographic analysis based on mitochondrial haplotypes and diagnostic single nucleotide polymorphisms indicates that the invasive sculpins are hybrids between two old lineages from the River Scheldt drainage and the River Rhine drainage, although it is morphologically more similar to the Scheldt sculpins. Most importantly, however, the invasive population possesses a unique ecological potential that does not occur in either of the source populations from the Rhine or the Scheldt, which allows the colonization of new habitats that have previously been free of sculpins. Microsatellite analysis shows that the new lineage is genetically intermediate between the old lineages and that it forms a distinct genetic group across its whole expansion range. We conclude that hybridization between long separated groups has lead to the fast emergence of a new, adaptationally distinct sculpin lineage.  相似文献   

6.
J Cheng  T Czypionka  A W Nolte 《Heredity》2013,111(6):520-529
Cottus rhenanus and Cottus perifretum have formed hybrid lineages and narrow hybrid zones that can be best explained through the action of natural selection. However, the underlying selective forces as well as their genomic targets are not well understood. This study identifies genomic regions in the parental species that cause hybrid incompatibilities and tests whether these manifest in a sex-specific manner to learn about processes that affect natural hybridization in Cottus. Interspecific F2 crosses were analyzed for 255 markers for genetic mapping and to detect transmission distortion as a sign for genetic incompatibilities. The Cottus map consists of 24 linkage groups with a total length of 1575.4 cM. A male heterogametic (XY) sex determination region was found on different linkage groups in the two parental species. Genetic incompatibilities were incomplete, varied among individuals and populations and were not associated with the heterogametic sex. The variance between populations and individuals makes it unlikely that there are species-specific incompatibility loci that could affect the gene pool of natural hybrids in a simple and predictable way. Conserved synteny with sequenced fish genomes permits to genetically study the Cottus genome through the transfer of genomic information from the model fish species. Homology relationships of candidate genomic regions in Cottus indicate that sex determination is not based on the same genomic regions found in other fish species. This suggests a fast evolutionary turnover of the genetic basis of sex determination that, together with the small size of the heterogametic regions, may contribute to the absence of fitness effects related to the Haldane''s rule.  相似文献   

7.
Predation can promote divergence between prey populations and contribute to ecological speciation. In theory, predators can also constrain prey population divergence. In coastal British Columbia, Canada, Gasterosteus aculeatus (three‐spined stickleback) species pairs only occur in lakes with a single species of predatory fish: Oncorhynchus clarkii (the cutthroat trout). Similar lakes containing additional predatory fish species (Cottus asper, prickly sculpins; Oncorhynchus mykiss, rainbow trout) contain only single species of morphologically intermediate stickleback, suggesting that these predators prevent the coexistence of stickleback species pairs. We conducted a mesocosm experiment to investigate how prickly sculpins might constrain divergence, by quantifying their impact on survival and natural selection on antipredator (armour) traits in F2 stickleback from a cross between ecologically divergent populations. We tested three hypotheses: (1) sculpin predation on sticklebacks reduces survival in a way that could result in their exclusion from certain niches; (2) sculpins compete with stickleback; (3) sculpins respond to prey vulnerabilities in similar ways to cutthroat trout, tending to constrain rather than to enhance divergence. We found that sculpins significantly reduce stickleback survival, that their presence per se does not reduce growth in stickleback, and that predation did not result in selection on any of the armour traits measured, or on gill raker length, which is an important trophic trait. These results tend to refute hypotheses (2) and (3), while supporting hypothesis (1). © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 877–885.  相似文献   

8.
The consequences of combining divergent genomes among populations of a diploid species often involve F1 hybrid vigor followed by hybrid breakdown in later recombinant generations. As many as 70% of plant species are thought to have polyploid origins; yet little is known about the genetic architecture of divergence in polyploids and how it may differ from diploid species. We investigated the genetic architecture of population divergence using controlled crosses among five populations of the autotetraploid herb, Campanulastrum americanum. Plants were reciprocally hybridized to produce F1, F2, and F1-backcross generations that were grown with parental types in a greenhouse and measured for performance. In contrast to diploid expectations, most F1 hybrids lacked heterosis and instead showed strong outbreeding depression for early life traits. Recombinant hybrid generations often showed a recovery of performance to levels approximating, or at times even exceeding, the parental values. This pattern was also evident for an index of cumulative fitness. Analyses of line means indicated nonadditive gene action, especially forms of digenic epistasis, often influenced hybrid performance. However, standard diploid genetic models were not adequate for describing the underlying genetic architecture in a number of cases. Differences between reciprocal hybrids indicated that cytoplasmic and/or cytonuclear interactions also contributed to divergence. An enhanced role of epistasis in population differentiation may be the norm in polyploids, which have more gene copies. This study, the first of its kind on a natural autotetraploid, suggests that gene duplication may cause polyploid populations to diverge in a fundamentally different way than diploids.  相似文献   

9.
Understanding the general features of speciation is an important goal in evolutionary biology, and despite significant progress, several unresolved questions remain. We analyzed an extensive comparative dataset consisting of more than 1900 crosses between 92 species of toads to infer patterns of reproductive isolation. This unique dataset provides an opportunity to examine the strength of reproductive isolation, the development and sex ratios of hybrid offspring, patterns of fertility and infertility, and polyploidization in hybrids all in the context of genetic divergence between parental species. We found that the strength of intrinsic postzygotic isolation increases with genetic divergence, but relatively high levels of divergence are necessary before reproductive isolation is complete in toads. Fertilization rates were not correlated to genetic divergence, but hatching success, the number of larvae produced, and the percentage of tadpoles reaching metamorphosis were all inversely related with genetic divergence. Hybrids between species with lower levels of divergence developed to metamorphosis, while hybrids with higher levels of divergence stopped developing in gastrula and larval stages. Sex ratios of hybrid offspring were biased towards males in 70% of crosses and biased towards females in 30% of crosses. Hybrid females from crosses between closely related species were completely fertile, while approximately half (53%) of hybrid males were sterile, with sterility predicted by genetic divergence. The degree of abnormal ploidy in hybrids was positively related to genetic divergence between parental species, but surprisingly, polyploidization had no effect on patterns of asymmetrical inviability. We discuss explanations for these patterns, including the role of Haldane''s rule in toads and anurans in general, and suggest mechanisms generating patterns of reproductive isolation in anurans.  相似文献   

10.
11.
Hybridization can induce transposons to jump into new genomic positions, which may result in their accumulation across the genome. Alternatively, transposon copy numbers may increase through nonallelic (ectopic) homologous recombination in highly repetitive regions of the genome. The relative contribution of transposition bursts versus recombination‐based mechanisms to evolutionary processes remains unclear because studies on transposon dynamics in natural systems are rare. We assessed the genomewide distribution of transposon insertions in a young hybrid lineage (“invasive Cottus”, n = 11) and its parental species Cottus rhenanus (n = 17) and Cottus perifretum(n = 9) using a reference genome assembled from long single molecule pacbio reads. An inventory of transposable elements was reconstructed from the same data and annotated. Transposon copy numbers in the hybrid lineage increased in 120 (15.9%) out of 757 transposons studied here. The copy number increased on average by 69% (range: 10%–197%). Given the age of the hybrid lineage, this suggests that they have proliferated within a few hundred generations since admixture began. However, frequency spectra of transposon insertions revealed no increase in novel and rare insertions across assembled parts of the genome. This implies that transposons were added to repetitive regions of the genome that remain difficult to assemble. Future studies will need to evaluate whether recombination‐based mechanisms rather than genomewide transposition may explain the majority of the recent transposon proliferation in the hybrid lineage. Irrespectively of the underlying mechanism, the observed overabundance in repetitive parts of the genome suggests that gene‐rich regions are unlikely to be directly affected.  相似文献   

12.
13.
Theory predicts that reproductive isolation may be due to intrinsic genetic incompatibilities or extrinsic ecological factors. Therefore, an understanding of the genetic basis of isolation may require analyses of evolutionary processes in situ to include environmental factors. Here we study genetic isolation between populations of sculpins ( Cottus ) at 168 microsatellites. Genomic clines were fit using 480 individuals sampled across independent natural hybrid zones that have formed between one invading species and two separate populations of a resident species. Our analysis tests for deviations from neutral patterns of introgression at individual loci based on expectations given genome-wide admixture. Roughly 51% of the loci analysed displayed significant deviations. An overall deficit of interspecific heterozygotes in 26% and 21% of the loci suggests that widespread underdominance drives genomic isolation. At the same time, selection promotes introgression of almost 30% of the markers, which implies that hybridization may increase the fitness of admixed individuals. Cases of overdominance or epistatic interactions were relatively rare. Despite the similarity of the two hybrid zones in their overall genomic composition, patterns observed at individual loci show little correlation between zones and many fit different genotypic models of fitness. At this point, it remains difficult to determine whether these results are due to differences in external selection pressures or cryptic genetic differentiation of distinct parental populations. In the future, data from mapped genetic markers and on variation of ecological factors will provide additional insights into the contribution of these factors to variation in the evolutionary consequences of hybridization.  相似文献   

14.
We investigated patterns of within-species genetic variation for traits observed in hybrids (hybrid numbers, hybrid sex ratios, and hybrid male deformities) between two species of flour beetles, Tribolium castaneum and T. freemani. We found genetic variation segregating among four natural populations of T. castaneum as well as within these populations. For some hybrid traits, we observed as much variation among populations 750 km apart as between populations on different continents, suggesting genetic differentiation at a local scale. Within natural populations, the variation segregating among sires is greater than that found in an earlier study for an outbred laboratory population and comparable to that observed between inbred lines derived from the outbred stock by eight generations of brother-sister mating. When sires from T. castaneum are mated to conspecific and heterospecific females, we do not observe a significant correlation at the level of the family mean between the intraspecific and interspecific phenotypes, suggesting the independence of the hybrid traits from comparable traits within species. We discuss our findings in relation to the evolutionary genetics of speciation and the expression of epistatic genetic variance in interspecific crosses.  相似文献   

15.
Hybrids between species provide information about the evolutionary processes involved in divergence. In addition to creating hybrids in the laboratory, biologists can take advantage of natural hybrid zones to understand the factors that shape gene flow between divergent lineages. In the early stages of speciation, most regions of the genome continue to flow freely between populations. Alternatively, the subset of the genome that confers reproductive barriers between nascent species is expected to reject introgression. Now enabled by advances in genomics, this perspective is motivating detailed comparisons of gene flow across genomic regions in hybrid zones. Here, I review methods for measuring and interpreting introgression at multiple loci in hybrid zones, focusing on the problem of identifying loci that contribute to reproductive isolation. Emerging patterns from multi-locus studies of hybrid zones are highlighted, including remarkable variance in introgression across the genome. Although existing methods have been useful, there is scope for development of new analytical approaches that better connect differential patterns of gene flow in hybrid zones with current knowledge of speciation mechanisms. I outline future prospects for differential introgression studies on a genomic scale.  相似文献   

16.
17.
The freshwater sculpins, genus Cottus (Teleostei; Cottidae), comprise bottom-dwelling fishes that exhibit various life-history styles, having radiated throughout Northern Hemisphere freshwater habitats. The phylogenetic relationships among Cottus and related taxa were estimated from mitochondrial DNA 12S rRNA and control region (CR) sequences, the freshwater sculpins examined falling into five lineages (A-E). Lineage A consisted of Trachidermus fasciatus and C. kazika, both having a catadromous life-history. The remaining species (lineages B-E) spawn in freshwater habitats regardless of life-history (amphidromous, lacustrine or fluvial), suggesting that the various life-history types post-dated a common ancestor of lineages B-E. Molecular clock estimates suggested a Pliocene-Pleistocene radiation (or Miocene-Pliocene from the alternative clock) of lineages B-E. In eastern Eurasia, speciation with life-history changes to amphidromous or fluvial styles has apparently occurred independently in some lineages, as a general pattern. Mitochondrial DNA CR phylogeny showed the monophyletic Baikalian cottoids (Cottoidei) to be nested within Cottus and Trachidermus, suggesting that the former ecologically and morphologically divergent cottoids may have originated from a single lineage which invaded the ancient lake.  相似文献   

18.
Pal Bhadra M  Bhadra U  Birchler JA 《Genetics》2006,174(3):1151-1159
A major model system for the study of evolutionary divergence between closely related species has been the unisexual lethality resulting from reciprocal crosses of Drosophila melanogaster and D. simulans. Sex-lethal (Sxl), a critical gene for sex determination, is misregulated in these hybrids. In hybrid males from D. melanogaster mothers, there is an abnormal expression of Sxl and a failure of localization of the male-specific lethal (MSL) complex to the X chromosome, which causes changes in gene expression. Introduction of a Sxl mutation into this hybrid genotype will allow expression of the MSL complex but there is no sequestration to the X chromosome. Lethal hybrid rescue (Lhr), which allows hybrid males from this cross to survive, corrects the SXL and MSL defects. The reciprocal cross of D. simulans mothers by D. melanogaster males exhibits underexpression of Sxl in embryos.  相似文献   

19.
A large portion of the annotated genes in Drosophila melanogaster show sex-biased expression, indicating that sex and reproduction-related genes (SRR genes) represent an appreciable component of the genome. Previous studies, in which subsets of genes were compared among few Drosophila species, have found that SRR genes exhibit unusual evolutionary patterns. Here, we have used the newly released genome sequences from 12 Drosophila species, coupled to a larger set of SRR genes, to comprehensively test the generality of these patterns. Among 2505 SRR genes examined, including ESTs with biased expression in reproductive tissues and genes characterized as involved in gametogenesis, we find that a relatively high proportion of SRR genes have experienced accelerated divergence throughout the genus Drosophila. Several testis-specific genes, male seminal fluid proteins (SFPs), and spermatogenesis genes show lineage-specific bursts of accelerated evolution and positive selection. SFP genes also show evidence of lineage-specific gene loss and/or gain. These results bring us closer to understanding the details of the evolutionary dynamics of SRR genes with respect to species divergence.  相似文献   

20.
Homoploid hybridization after secondary contact between related species can lead to mixtures of genotypes which have the potential for rapid adaptation to new environmental conditions. Here, we focus on a case where anthropogenic changes within the past 200 years have allowed the hybridization between two fish species (Cottus rhenanus and Cottus perifretum) in the Netherlands. Specifically, we address the question of the dynamics of the emergence of these hybrids and invasion of the river systems. Using a set of 81 mostly ancestry-informative SNP markers, as well as broad sample coverage in and around the area of the initial contact, we find a structured hybrid swarm with at least three distinct hybrid lineages that have emerged out of this secondary contact situation. We show that genetically coherent groups can occur at geographically distant locations, while geographically adjacent groups can be genetically different, indicating that some form of reproductive isolation between the lineages is already effective. Using a newly developed modelling approach, we test the relative influence of founding admixture, drift and migration on the allele compositions of the sampling sites. We find that the allele frequency distributions can best be explained if continued gene flow between the parental species and the hybrid lineages is invoked. Genome mapping of the invasive lineage in the Rhine shows that major chromosomal rearrangements were not involved in creating this distinct lineage. Our results show that hybridization after secondary contact can quickly lead to multiple independent new lineages that have the capacity to form hybrid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号