首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increased risk in patients with metabolic syndrome. There are no FDA-approved treatments, but FXR agonists have shown promising results in clinical studies for NAFLD management. In addition to FXR, fibroblast growth factor receptor FGFR4 is a key mediator of hepatic bile acid synthesis. Using N-acetylgalactosamine–conjugated siRNA, we knocked down FGFR4 specifically in the liver of mice on chow or high-fat diet and in mouse primary hepatocytes to determine the role of FGFR4 in metabolic processes and hepatic steatosis. Liver-specific FGFR4 silencing increased bile acid production and lowered serum cholesterol. Additionally, we found that high-fat diet–induced liver steatosis and insulin resistance improved following FGFR4 knockdown. These improvements were associated with activation of the FXR-FGF15 axis in intestinal cells, but not in hepatocytes. We conclude that targeting FGFR4 in the liver to activate the intestinal FXR-FGF15 axis may be a promising strategy for the treatment of NAFLD and metabolic dysfunction.  相似文献   

2.
The nuclear receptor Farnesoid X Receptor (FXR) critically regulates nascent bile formation and bile acid enterohepatic circulation. Bile acids and FXR play a pivotal role in regulating hepatic inflammation and regeneration as well as in regulating extent of inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. Recent evidence suggests, that the bile acid–FXR interaction is involved in the pathophysiology of a wide range of diseases of the liver, biliary and gastrointestinal tract, such as cholestatic and inflammatory liver diseases and hepatocellular carcinoma, inflammatory bowel disease and inflammation-associated cancer of the colon and esophagus. In this review we discuss current knowledge of the role the bile acid–FXR interaction has in (patho)physiology of the liver, biliary and gastrointestinal tract, and proposed underlying mechanisms, based on in vitro data and experimental animal models. Given the availability of highly potent synthetic FXR agonists, we focus particularly on potential relevance for human disease.  相似文献   

3.
4.
5.
Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.  相似文献   

6.
《Bioscience Hypotheses》2008,1(3):145-146
Hepatorenal syndrome (HRS) is a major complication of cholestatic liver disease (CLD), characterized by vasoconstriction. Since nitric oxide (NO) is a potent vasodilator, NO deficiency has been proposed to cause HRS. Retention of bile acid plays a role in liver damage; however, whether bile acid triggers extrahepatic tissue damage is unclear. Farnesoid X receptor (FXR) is a bile acid-sensor nuclear receptor abundant in the kidney. We recently found increased oxidative stress and asymmetric dimethylarginine (ADMA) are major causes of NO deficiency. We hypothesize that impaired regulation of FXR and its target genes by bile acid within the kidney resulting in HRS through two major mechanisms: First, increased oxidative stress due to decreased glutathione/reduced glutathione ratio, which is regulated by FXR-target genes, multidrug resistance-associated proteins (MRPs); Second, increased ADMA due to impaired regulation of protein arginine methyltransferase (PRMT, ADMA-synthesizing enzyme) 1 and dimethylarginine dimethylaminohydrolase (DDAH, ADMA-metabolizing enzyme) by FXR. Therefore, FXR agonist may be a therapeutic approach to treat HRS via reducing oxidative stress and ADMA to restore NO in CLD.  相似文献   

7.
Farnesoid X receptor (FXR) plays important regulatory roles in bile acid, lipoprotein, and glucose homeostasis. Here, we have utilized Fxr−/− mice and mice deficient in scavenger receptor class B type I (SR-BI), together with an FXR-specific agonist and adenovirus expressing hepatocyte nuclear factor 4α or constitutively active FXR, to identify the mechanisms by which activation of FXR results in hypocholesterolemia. We identify a novel pathway linking FXR to changes in hepatic p-JNK, hepatocyte nuclear factor 4α, and finally SR-BI. Importantly, we demonstrate that the FXR-dependent increase in SR-BI results in both hypocholesterolemia and an increase in reverse cholesterol transport, a process involving the transport of cholesterol from peripheral macrophages to the liver for excretion into the feces. In addition, we demonstrate that FXR activation also induces an SR-BI-independent increase in reverse cholesterol transport and reduces intestinal cholesterol absorption. Together, these data indicate that FXR is a promising therapeutic target for treatment of hypercholesterolemia and coronary heart disease.  相似文献   

8.
法尼醇X受体(Farnesoid X Receptor,FXR)属于代谢性核受体,是需配体激活的转录因子,在肝脏胆汁酸、脂质代谢过程,肝脏炎症和肿瘤的发展过程中起着重要的调节作用。小异二聚体伴侣受体(Small Heterodimer Partner,SHP)是核受体超家族中的一个特殊成员,在特异的组织中作为转录调节的共抑制因子,抑制其他多种转录因子的活性,在众多代谢通路中起到了负性调节作用。近年来研究发现,核受体FXR通过对SHP的调控来实现其在肝脏的多种功能。本文着重对FXR调节SHP的机制及FXR-SHP轴在肝脏中作用进行综述。  相似文献   

9.
Targeting farnesoid X receptor for liver and metabolic disorders   总被引:3,自引:0,他引:3  
The farnesoid X receptor (FXR) is a metabolic nuclear receptor expressed in the liver, intestine, kidney and adipose tissue. By regulating the expression and function of genes involved in bile acid (BA) synthesis, uptake and excretion, FXR has emerged as a key gene involved in the maintenance of cholesterol and BA homeostasis. FXR ligands are currently under clinical investigation for the treatment of cholestasis, dyslipidemic disorders and conditions of insulin resistance in type 2 diabetes and non-alcoholic steatohepatitis (NASH). Because activation of FXR impacts a considerable number of genes, development of FXR modulators that selectively regulate specific pathways will limit potentially undesirable side effects. Interaction of FXR with other BAs and xenobiotics sensors such as the constitutive androstane receptor and the pregnane X receptor might allow the development of combination therapies for liver and metabolic disorders.  相似文献   

10.
11.
FXR signaling in metabolic disease   总被引:2,自引:0,他引:2  
Zhang Y  Edwards PA 《FEBS letters》2008,582(1):10-18
Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily, has been shown to be important in controlling numerous metabolic pathways; these include roles in maintaining bile acid, lipid and glucose homeostasis, in preventing intestinal bacterial infection and gallstone formation and in modulating liver regeneration and tumorigenesis. The accumulating data suggest that FXR may be a pharmaceutical target for the treatment of certain metabolic diseases.  相似文献   

12.
Farnesoid X receptor (FXR) (nuclear receptor subfamily 1, group H, member 4) is a member of nuclear hormone receptor superfamily, which plays essential roles in metabolism of bile acids, lipid, and glucose. We previously showed spontaneously hepatocarcinogenesis in aged FXR(-/-) mice, but its relevance to human hepatocellular carcinoma (HCC) is unclear. Here, we report a systematical analysis of hepatocarcinogenesis in FXR(-/-) mice and FXR expression in human liver cancer. In this study, liver tissues obtained from FXR(-/-) and wild-type mice at different ages were compared by microarray gene profiling, histological staining, chemical analysis, and quantitative real-time PCR. Primary hepatic stellate cells and primary hepatocytes isolated from FXR(-/-) and wild-type mice were also analyzed and compared. The results showed that the altered genes in FXR(-/-) livers were mainly related to metabolism, inflammation, and fibrosis, which suggest that hepatocarcinogenesis in FXR(-/-) mice recapitulated the progression of human liver cancer. Indeed, FXR expression in human HCC was down-regulated compared with normal liver tissues. Furthermore, the proinflammatory cytokines, which were up-regulated in human HCC microenvironment, decreased FXR expression by inhibiting the transactivity of hepatic nuclear factor 1α on FXR gene promoter. Our study thereby demonstrates that the down-regulation of FXR has an important role in human hepatocarcinogenesis and FXR(-/-) mice provide a unique animal model for HCC study.  相似文献   

13.
Metabolic disorders such as diabetes are known risk factors for developing cholesterol gallstone disease (CGD). Cholesterol gallstone disease is one of the most prevalent digestive diseases, leading to considerable financial and social burden worldwide. Ursodeoxycholic acid (UDCA) is the only bile acid drug approved by FDA for the non-surgical treatment of gallstones. However, the molecular link between UDCA and CGD is unclear. Previous data suggest that the farnesoid X receptor (FXR), a bile acid nuclear receptor, may protect against the development of CGD. In studies aimed at identifying the role of FXR, we recently identify a novel chemical tool, 6EUDCA (6-αethyl-ursodeoxycholic acid), a synthetic derivative of UDCA, for studying FXR. We found that 6EUDCA binds FXR stronger than UDCA in a TR-FRET binding assay. This result was supported by computational docking models that suggest 6EUDCA forms a more extensive hydrogen bound network with FXR. Interestingly, neither compound could activate FXR target genes in human nor mouse liver cells, suggesting UDCA and 6EUDCA activate non-genomic signals in an FXR-dependent manner. Overall these studies may lead to the identification of a novel mechanism by which bile acids regulate cell function, and 6EUDCA may be an effective targeted CGD therapeutic.  相似文献   

14.
During the last three years there have been a plethora of publications on the liver X-activated receptors (LXRalpha, NR1H3, and LXRbeta, NR1H2), the farnesoid X-activated receptor (FXR, NR1H4), and the pregnane X receptor (PXR, NR1I2) and the role these nuclear receptors play in controlling cholesterol, bile acid, lipoprotein and drug metabolism. The current interest in these nuclear receptors is high, in part, because they appear to be promising therapeutic targets for new drugs that have the potential to control lipid homeostasis.In this review we emphasize i) the role of LXR in controlling many aspects of cholesterol and fatty acid metabolism, ii) the expanded role of FXR in regulating genes that control not only bile acid metabolism but also lipoprotein metabolism, and iii) the regulation of bile acid transport/metabolism in response to bile acid-activated PXR.  相似文献   

15.
非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)作为一种慢性肝病,在全球的发病率逐年递增。胰岛素抵抗和脂质代谢紊乱,以及随后的炎症反应和纤维化的激活,在其发生发展过程中发挥重要作用。但是对其认识仍很欠缺,且临床尚缺乏有效的药物。科研人员正极力探索NAFLD的相关病因及治疗的新的突破口。胆汁酸是在肝中合成的众多代谢产物之一。除帮助脂肪消化吸收外,胆汁酸还作为信号分子激活胆汁酸受体,一种重要的转录调节因子而发挥效应,对维持机体正常生理代谢至关重要。越来越多的证据表明,胆汁酸受体的功能与NAFLD的发生发展关系密切,研究其相关的作用与功能可为治疗NAFLD提供新见解和药物治疗靶点。本文就胆汁酸受体包括核受体,诸如法尼醇X受体 (farnesoid X receptor, FXR)、孕烷X受体 (pregnane X receptor ,PXR)等,和细胞表面受体,诸如跨膜G蛋白偶联胆汁酸受体5(transmembrane G protein-coupled receptor 5, TGR5)、鞘氨醇-1-磷酸受体2(phingosine-1-phosphate receptor 2, S1PR2)和毒蕈碱胆碱受体3 (M3 muscarinic receptor, M3R)通过调节胆汁酸稳态、脂质和糖代谢、能量代谢、肝的炎症和纤维化等参与NAFLD发病机制的研究进展进行总结,并进一步阐述了胆汁酸受体激动剂对NAFLD的治疗现状,以期更全面地了解NAFLD的发病机制以及为治疗找到更有效的途径。  相似文献   

16.
Diabetes is the leading cause of end-stage renal disease in developed countries. In spite of excellent glucose and blood pressure control, including administration of angiotensin converting enzyme inhibitors and/or angiotensin II receptor blockers, diabetic nephropathy still develops and progresses. The development of additional protective therapeutic interventions is, therefore, a major priority. Nuclear hormone receptors regulate carbohydrate metabolism, lipid metabolism, the immune response, and inflammation. These receptors also modulate the development of fibrosis. As a result of their diverse biological effects, nuclear hormone receptors have become major pharmaceutical targets for the treatment of metabolic diseases. The increasing prevalence of diabetic nephropathy has led intense investigation into the role that nuclear hormone receptors may have in slowing or preventing the progression of renal disease. This role of nuclear hormone receptors would be associated with improvements in metabolism, the immune response, and inflammation. Several nuclear receptor activating ligands (agonists) have been shown to have a renal protective effect in the context of diabetic nephropathy. This review will discuss the evidence regarding the beneficial effects of the activation of several nuclear, especially the vitamin D receptor (VDR), farnesoid X receptor (FXR), and peroxisome-proliferator-associated receptors (PPARs) in preventing the progression of diabetic nephropathy and describe how the discovery and development of compounds that modulate the activity of nuclear hormone receptors may provide potential additional therapeutic approaches in the management of diabetic nephropathy. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.  相似文献   

17.
Li J  Kuruba R  Wilson A  Gao X  Zhang Y  Li S 《PloS one》2010,5(11):e13955
Activation of hepatic stellate cells (HSCs) plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1). The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen production. However, little is known about the roles of FXR in the regulation of contraction of HSCs. We report in this study that treatment of quiescent HSCs with GW4064, a synthetic FXR agonist, significantly inhibited the HSC transdifferentiation, which was associated with an inhibition of the upregulation of ET-1 expression. These GW4064-treated cells also showed reduced contractile response to ET-1 in comparison to HSCs without GW4064 treatment. We have further shown that GW4064 treatment inhibited the ET-1-mediated contraction in fully activated HSCs. To elucidate the potential mechanism we showed that GW4064 inhibited ET-1-mediated activation of Rho/ROCK pathway in activated HSCs. Our studies unveiled a new mechanism that might contribute to the anti-cirrhotic effects of FXR ligands.  相似文献   

18.
Farnesoid X receptor (FXR) modulates the expression of genes involved in lipid and carbohydrate homeostasis and inflammatory processes. This nuclear receptor is likely a tumor suppressor in several cancers, but its molecular mechanism of suppression is still under study. Several studies reported that FXR agonism increases the survival of colorectal, biliary tract, and liver cancer patients. In addition, FXR expression was shown to be down-regulated in many diseases such as obesity, irritable bowel syndrome, glomerular inflammation, diabetes, proteinuria, and ulcerative colitis. Therefore, development of novel FXR agonists may have significant potential in the prevention and treatment of these diseases. In this scenario, computer-aided drug design procedures can be resourcefully applied for the rapid identification of promising drug candidates. In the present study, we applied the molecular docking method in conjunction with molecular dynamics (MD) simulations to find out potential agonists for FXR based on structural similarity with the drug that is currently used as FXR agonist, obeticholic acid. Our results showed that alvimopan and montelukast could be used as potent FXR activators and outperform the binding affinity of obeticholic acid by forming stable conformation with the protein in silico. However, further investigational studies and validations of the selected drugs are essential to figure out their suitability for preclinical and clinical trials.  相似文献   

19.
The farnesoid X receptor (FXR) is a nuclear receptor that regulates gene expression in response to bile acids (BAs). FXR plays an important role in the homeostasis of bile acid, cholesterol, lipoprotein and triglyceride. In this report, we identified fatty acid synthase (FAS) and hepatic lipase (HL) genes as novel target genes of FXR. Human hepatoma HepG2 cells were treated with chenodeoxycholic acid, the natural FXR ligand, and the messenger RNA and protein levels of FAS and HL were determined by RT-PCR and Western blot analysis, respectively. Chenodeoxycholic acid (CDCA) down-regulated the expression of FAS and HL genes in a dose and time-dependent manner in human hepatoma HepG2 cells. In addition, treatment of mice with CDCA significantly decreased the expression of FAS and HL in mouse liver and the activity of HL. These results demonstrated that FAS and HL might be FXR-regulated genes in liver cells. In view of the role of FAS and HL in lipogenesis and plasma lipoprotein metabolism, our results further support the central role of FXR in the homeostasis of fatty acid and lipid.  相似文献   

20.
Ephrin type-A receptor 2(EphA2), a receptor tyrosine kinase, is overexpressed in human breast cancers often linked to poor patient prognosis. Accumulating evidence demonstrates that EphA2 plays important roles in several critical processes associated with malignant breast progression, such as proliferation,survival, migration, invasion, drug resistance, metastasis, and angiogenesis. As its inhibition through multiple approaches can inhibit the growth of breast cancer and restore drug sensitivity, EphA2 has become a promising therapeutic target for breast cancer treatment. Here, we summarize the expression,functions, mechanisms of action, and regulation of EphA2 in breast cancer. We also list the potential therapeutic strategies targeting EphA2. Furthermore, we discuss the future directions of studying EphA2 in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号