首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the taxonomic composition, abundance, and size of food items consumed by young-of-year, juvenile, and adult Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus) in order to determine the degree of diet overlap occurring in a relatively unproductive, high-elevation, mountain stream. Overall, we identified 49 Families of insects representing nine Orders, and 4 other Classes of organisms in the diets of the trout sampled and saw no evidence of piscivory. Each size class of fish consumed significantly different taxa and significantly different sizes of food items. However, despite these differences, the proportional similarity index (PSI) indicated that there was considerable overlap in taxa and sizes of organisms consumed by the three size classes. The greatest overlap occurred between young-of-year and juveniles, and between juveniles and adults. Both the relatively high proportion of small items in the adult diet and the slow growth rate of adults in these streams indicate that food may be limiting for adults and that intraspecific competition between adults and smaller size classes may be high.  相似文献   

2.
3.
Understanding the extent to which phylogenetic constraints and adaptive evolutionary forces help define the physiological sensitivity of species is critical for anticipating climate‐related impacts in aquatic environments. Yet, whether upper thermal tolerance and plasticity are shaped by common evolutionary and environmental mechanisms remains to be tested. Based on a systematic literature review, we investigated this question in 82 freshwater fish species (27 families) representing 829 experiments for which data existed on upper thermal limits and it was possible to estimate plasticity using upper thermal tolerance reaction norms. Our findings indicated that there are strong phylogenetic signals in both thermal tolerances and acclimation capacity, although it is weaker in the latter. We found that upper thermal tolerances are correlated with the temperatures experienced by species across their range, likely because of spatially autocorrelated processes in which closely related species share similar selection pressures and limited dispersal from ancestral environments. No association with species thermal habitat was found for acclimation capacity. Instead, species with the lowest physiological plasticity also displayed the highest thermal tolerances, reflecting to some extent an evolutionary trade‐off between these two traits. Although our study demonstrates that macroecological climatic niche features measured from species distributions are likely to provide a good approximation of freshwater fish sensitivity to climate change, disentangling the mechanisms underlying both acute and chronic heat tolerances may help to refine predictions regarding climate change‐related range shifts and extinctions.  相似文献   

4.
Considerable attention has been given to the potential impacts of global climate change on biodiversity. In the present study, we combine understudied themes by examining the ability of a freshwater fish (polymorphic for heat‐sensitivity) to respond to short‐term thermal stress mimicking an extreme temperature event. We simultaneously measured the effect of thermal stress on the body condition of heat‐sensitive and heat‐tolerant forms to evaluate an existing hypothesis regarding the underlying mechanism by which temperature affects the maintenance of genetic variation in this species. Surprisingly, the heat‐sensitive allelic variant increased in body condition equally as much as a heat‐tolerant variant under acute heat stress. More importantly, the heat‐sensitive variant exhibited a significant response to thermal stress, with an upward shift of greater than 2 °C in critical thermal maximum. Our findings suggest a complexity to the relationship between thermal stress and male body condition that may depend on an interaction with other factors such as resource level. Although the evolutionary fate of species with respect to climate change is typically evaluated in terms long‐term adaptive response, short‐term selection events could drastically reduce fitness and reduce evolutionary potential. Our results suggest that heat‐sensitive species may have considerably greater resilience to the short‐term, extreme perturbations to the environment that are expected under climate change. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 504–510.  相似文献   

5.
The critical thermal maxima (TMAX) of threadfin shad Dorosoma petenense exposed to standardized stress (30 s handling in a dip‐net), simulating stressors endured during fish loading before transport, were measured over a range of holding temperatures (15, 20 and 25° C). Dorosoma petenense TMAX showed a significant thermal effect, displaying mean ±s.d . critical thermal maxima of 26·5 ± 1·6, 30·9 ± 1·2 and 33·3 ± 1·4° C, when tested at temperatures of 15, 20 and 25° C, respectively. Dorosoma petenense TMAX levels were also affected by stress, with handled fish showing significantly lower values than control fish exposed to 15 (mean ±s.d . TMAX = 25·6 ± 2·0° C), 20 (27·6 ± 2·8° C) and 25° C (32·0 ± 2·6° C). In addition to providing basic information on D. petenense thermal tolerance, experimental results suggest that fishery managers should consider the whole suite of potential stressors, such as air exposure during handling and fish loading, when developing management criteria.  相似文献   

6.
7.
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short‐term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short‐term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short‐term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill‐coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short‐term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill‐coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high‐elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high‐temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations.  相似文献   

8.
Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high‐elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a ≥90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high‐elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks.  相似文献   

9.
In 2010, the American pika (Ochotona princeps fenisex) was denied federal protection based on limited evidence of persistence in low‐elevation environments. Studies in nonalpine areas have been limited to relatively few environments, and it is unclear whether patterns observed elsewhere (e.g., Bodie, CA) represent other nonalpine habitats. This study was designed to establish pika presence in a new location, determine distribution within the surveyed area, and evaluate influences of elevation, vegetation, lava complexity, and distance to habitat edge on pika site occupancy. In 2011 and 2012, we conducted surveys for American pika on four distinct subalpine lava flows of Newberry National Volcanic Monument, Oregon, USA. Field surveys were conducted at predetermined locations within lava flows via silent observation and active searching for pika sign. Site habitat characteristics were included as predictors of occupancy in multinomial regression models. Above and belowground temperatures were recorded at a subsample of pika detection sites. Pika were detected in 26% (2011) and 19% (2012) of survey plots. Seventy‐four pika were detected outside survey plot boundaries. Lava complexity was the strongest predictor of pika occurrence, where pika were up to seven times more likely to occur in the most complicated lava formations. Pika were two times more likely to occur with increasing elevation, although they were found at all elevations in the study area. This study expands the known distribution of the species and provides additional evidence for persistence in nonalpine habitats. Results partially support the predictive occupancy model developed for pika at Craters of the Moon National Monument, another lava environment. Characteristics of the lava environment clearly influence pika site occupancy, but habitat variables reported as important in other studies were inconclusive here. Further work is needed to gain a better understanding of the species’ current distribution and ability to persist under future climate conditions.  相似文献   

10.
Across a species' range, populations are exposed to their local thermal environments, which on an evolutionary scale, may cause adaptative differences among populations. Helminths often have broad geographic ranges and temperature-sensitive life stages but little is known about whether and how local thermal adaptation can influence their response to climate change. We studied the thermal responses of the free-living stages of Marshallagia marshalli, a parasitic nematode of wild ungulates, along a latitudinal gradient. We first determine its distribution in wild sheep species in North America. Then we cultured M. marshalli eggs from different locations at temperatures from 5 to 38°C. We fit performance curves based on the metabolic theory of ecology to determine whether development and mortality showed evidence of local thermal adaptation. We used parameter estimates in life-cycle-based host–parasite models to understand how local thermal responses may influence parasite performance under general and location-specific climate-change projections. We found that M. marshalli has a wide latitudinal and host range, infecting wild sheep species from New Mexico to Yukon. Increases in mortality and development time at higher temperatures were most evident for isolates from northern locations. Accounting for location-specific parasite parameters primarily influenced the magnitude of climate change parasite performance, while accounting for location-specific climates primarily influenced the phenology of parasite performance. Despite differences in development and mortality among M. marshalli populations, when using site-specific climate change projections, there was a similar magnitude of impact on the relative performance of M. marshalli among populations. Climate change is predicted to decrease the expected lifetime reproductive output of M. marshalli in all populations while delaying its seasonal peak by approximately 1 month. Our research suggests that accurate projections of the impacts of climate change on broadly distributed species need to consider local adaptations of organisms together with local temperature profiles and climate projections.  相似文献   

11.
12.
13.
The effects of acclimation temperature on insect thermal performance curves are generally poorly understood but significant for understanding responses to future climate variation and the evolution of these reaction norms. Here, in Acheta domesticus, we examine the physiological effects of 7-9 days acclimation to temperatures 4 °C above and below optimum growth temperature of 29 °C (i.e. 25, 29, 33 °C) for traits of resistance to thermal extremes, temperature-dependence of locomotion performance (jumping distance and running speed) and temperature-dependence of respiratory metabolism. We also examine the effects of acclimation on mitochondrial cytochrome c oxidase (CCO) enzyme activity. Chill coma recovery time (CRRT) was significantly reduced from 38 to 13 min with acclimation at 33-25 °C, respectively. Heat knockdown resistance was less responsive than CCRT to acclimation, with no significant effects of acclimation detected for heat knockdown times (25 °C: 18.25, 29 °C: 18.07, 33 °C: 25.5 min). Thermal optima for running speed were higher (39.4-40.6 °C) than those for jumping performance (25.6-30.9 °C). Acclimation temperature affected jumping distance but not running speed (general linear model, p = 0.0075) although maximum performance (UMAX) and optimum temperature (TOPT) of the performance curves showed small or insignificant effects of acclimation temperature. However, these effects were sensitive to the method of analysis since analyses of TOPT, UMAX and the temperature breadth (TBR) derived from non-linear curve-fitting approaches produced high inter-individual variation within acclimation groups and reduced variation between acclimation groups. Standard metabolic rate (SMR) was positively related to body mass and test temperature. Acclimation temperature significantly influenced the slope of the SMR-temperature reaction norms, whereas no variation in the intercept was found. The CCO enzyme activity remained unaffected by thermal acclimation. Finally, high temperature acclimation resulted in significant increases in mortality (60-70% at 33 °C vs. 20-30% at 25 and 29 °C). These results suggest that although A. domesticus may be able to cope with low temperature extremes to some degree through phenotypic plasticity, population declines with warmer mean temperatures of only a few degrees are likely owing to the limited plasticity of their performance curves.  相似文献   

14.
Global change is shifting both temperature patterns and the geographic distribution of pathogens, and infection has already been shown to substantially reduce host thermal performance, potentially placing populations at greater risk that previously thought. But what about individuals that are able to successfully clear an infection? Whilst the direct damage a pathogen causes will likely lead to reductions in host's thermal tolerance, the response to infection often shares many underlying pathways with the general stress response, potentially acting as a buffer against subsequent thermal stress. Here, by exposing Drosophila melanogaster to heat‐killed bacterial pathogens, we investigate how activation of a host's immune system can modify any response to both heat and cold temperature stress. In a single focal population, we find that immune activation can improve a host's knockdown times during heat shock, potentially offsetting some of the damage that would subsequently arise as an infection progresses. Conversely, immune activation had a detrimental effect on CTmax and did not influence lower thermal tolerance as measured by chill‐coma recovery time. However, we also find that the influence of immune activation on heat knockdown times is not generalizable across an entire cline of locally adapted populations. Instead, immune activation led to signals of local adaptation to temperature being lost, erasing the previous advantage that populations in warmer regions had when challenged with heat stress. Our results suggest that activation of the immune system may help buffer individuals against the detrimental impact of infection on thermal tolerance; however, any response will be population specific and potentially not easily predicted across larger geographic scales, and dependent on the form of thermal stress faced by a host.  相似文献   

15.
Differences in population vulnerability to warming are defined by spatial patterns in thermal adaptation. These patterns may be driven by natural selection over spatial environmental gradients, but can also be shaped by gene flow, especially in marine taxa with high dispersal potential. Understanding and predicting organismal responses to warming requires disentangling the opposing effects of selection and gene flow. We begin by documenting genetic divergence of thermal tolerance and developmental phenotypic plasticity. Ten populations of the widespread copepod Acartia tonsa were collected from sites across a large thermal gradient, ranging from the Florida Keys to Northern New Brunswick, Canada (spanning over 20° latitude). Thermal performance curves (TPCs) from common garden experiments revealed local adaptation at the sampling range extremes, with thermal tolerance increasing at low latitudes and decreasing at high latitudes. The opposite pattern was observed in phenotypic plasticity, which was strongest at high latitudes. No relationship was observed between phenotypic plasticity and environmental variables. Instead, the results are consistent with the hypothesis of a trade‐off between thermal tolerance and the strength of phenotypic plasticity. Over a large portion of the sampled range, however, we observed a remarkable lack of differentiation of TPCs. To examine whether this lack of divergence is the result of selection for a generalist performance curve or constraint by gene flow, we analyzed cytochrome oxidase I mtDNA sequences, which revealed four distinct genetic clades, abundant genetic diversity, and widely distributed haplotypes. Strong divergence in thermal performance within genetic clades, however, suggests that the pace of thermal adaptation can be relatively rapid. The combined insight from the laboratory physiological experiments and genetic data indicate that gene flow constrains differentiation of TPCs. This balance between gene flow and selection has implications for patterns of vulnerability to warming. Taking both genetic differentiation and phenotypic plasticity into account, our results suggest that local adaptation does not increase vulnerability to warming, and that low‐latitude populations in general may be more vulnerable to predicted temperature change over the next century.  相似文献   

16.
17.
Insects' cold tolerance during their development is a surprisingly understudied subject in ecology, despite the fact that subzero temperatures during the growing season are common at high altitudes and latitudes. Subzero temperatures can have detrimental effects on organisms, restricting a species' range. This study addresses the question whether night frosts during the growing season have an instant or delayed negative impact on larval mortality of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). We also tested whether populations from the centre (Poland) and margins (Russia) of the distribution range of L. decemlineata differ in their responses to subzero exposure and a low rearing temperature. Larvae of three ages were subjected to a subzero temperature (−4 °C for 3 h simulating night frost) twice, after which they were reared on a fluctuating temperature regime of 10–15 °C. These rearing conditions imitated cool summer temperatures beyond the beetles' current range, such as in Finland. Individuals of both populations were highly cold tolerant, as only 3.1% of larvae died immediately following the subzero treatment. Nonetheless, the low rearing temperature was harmful to beetles of both populations. It caused high larval (ca. 90%) and overwintering (ca. 80%) mortality. As beetle performance was affected solely by rearing temperature, low temperatures during the growing season rather than night frosts apparently retard the beetle's northern expansion.  相似文献   

18.
Under stressful thermal environments, insects adjust their behavior and physiology to maintain key life‐history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. When exposed for 2 h to a static temperature, lower lethal temperatures ranged from ?9 to 6 °C, ?14 to ?2 °C, and ?1 to 4 °C while upper lethal temperatures ranged from 37 to 48 °C, 41 to 49 °C, and 36 to 39 °C for C. partellus eggs, larvae, and C. sesamiae adults, respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean supercooling points (SCPs) for C. partellus larvae, pupae, and adults were ?11.82 ± 1.78, ?10.43 ± 1.73 and ?15.75 ± 2.47, respectively. Heat knock‐down time (HKDT) and chill‐coma recovery time (CCRT) varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the latter recovered significantly faster following chill‐coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host–parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect–natural enemy interactions under rapidly changing thermal environments.  相似文献   

19.
Montane reptiles are predicted to move to higher elevations in response to climate warming. However, whether upwards-shifting reptiles will be physiologically constrained by hypoxia at higher elevations remains unknown. We investigated the effects of hypoxic conditions on preferred body temperatures (Tpref) and thermal tolerance capacity of a montane lizard (Phrynocephalus vlangalii) from two populations on the Qinghai–Tibet Plateau. Lizards from 2600 m a.s.l. were exposed to O2 levels mimicking those at 2600 m (control) and 3600 m (hypoxia treatment). Lizards from 3600 m a.s.l. were exposed to O2 levels mimicking those at 3600 m (control) and 4600 m (hypoxia treatment). The Tpref did not differ between the control and hypoxia treatments in lizards from 2600 m. However, lizards from 3600 m selected lower body temperatures when exposed to the hypoxia treatment mimicking the O2 level at 4600 m. Additionally, the hypoxia treatment induced lower critical thermal minimum (CTmin) in lizards from both populations, but did not affect the critical thermal maximum (CTmax) in either population. Our results imply that upwards-shifting reptiles may be constrained by hypoxia if a decrease in Tpref reduces thermally dependent fitness traits, despite no observed effect on their heat tolerance.  相似文献   

20.
Aims Twentieth‐century climate, the spatial pattern of tree establishment and positive feedback influence upper tree line ecotones. Here, I investigate how these factors interact to gain a more holistic understanding of how broad‐scale abiotic and local‐scale site conditions regulate tree establishment within upper tree line ecotones. Location A latitudinal gradient (c. 35–45° N) in the US Rocky Mountains. Study sites (n= 22) were located in the Bighorn (BH), Medicine Bow (MB), Front Range (FR) and Sangre de Cristo (SDC) mountain ranges. Methods Dendroecological techniques were used to reconstruct tree establishment dates that were compared with 20th‐century climate data using correlation and regime shift analyses. Spatial patterns of tree establishment were analysed by Ripley's K and used to determine local‐scale interactions capable of ameliorating broad‐scale climate inputs through positive feedback. Results Significant correlations (P < 0.01) between tree establishment and climate were confined to the FR, where a positive correlation was found with summer (June–August) and cool season (November–April) temperature range (Tmax?Tmin). These trees were almost exclusively situated in a random spatial pattern. Similar patterns exist in the BH, yet their establishment was contingent on the availability of local shelter in the lee of boulders. Trees in the MB and SDC were primarily clustered in space and had no significant correlations with climate. Considerable lag times exist between regime shift changes in climate towards more favourable growing conditions and corresponding shifts in tree establishment in all mountain ranges except the FR, where synchronous shifts occurred in the early 1950s. Main conclusions These results suggest that the influence of broad‐scale climate on upper tree line dynamics is contingent on the local‐scale spatial patterns of tree establishment and related influences of positive feedback. This research has important implications for understanding how vegetation communities will respond to global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号